This work aims to achieve a functional system in terms of software and hardware to measure humidity with temperature and raining fall. Also, this system allows monitoring the date and time. We used Arduino Nano with the interfacing of the DHT22 sensor and a raindrop sensor placed in the local environment to measure the mentioned data. After designing the system that depends on the microcontroller Embedded on the Arduino board, we will display the data on a screen of the PC by the Arduino window (serial monitor) and display it on the LCD screen. This paper describes a simple portable design for humidity, temperature, and rain or no rain. The portable design can be made with a low cost of electronic components. It is efficiently and locally available so that it can be used to monitor weather conditions at any place. The test results showed that this system's component is small and can be packaged in a small plastic box. Besides, through the programming, we recorded the data on the Excel program, and at the same time. The data were recorded in a memory added to the manufactured system. The data obtained every five seconds are the (date, time, temperature, humidity, weather if rainy or not rainy). The system consists of two parts; the first part is inside the indoor, and it can be placed outdoor as needed and the second part is a rain sensor that can be placed outdoor. In case of rain, the buzzer and LED can be turned on to indicate the condition of rain.
This work investigates CuO and CdS (material as nanoparticles mixed with a polymer (Cellulose Acetate)) – based ReRAM having stable resistive switching. It also investigates a new composition of a memory which is constructed with silicon as a pedestal, silicon oxide SiO2 thermally grown on it and active materials that include of (CuO material as nanoparticles mixed with a polymer (Cellulose Acetate) layer) sandwiched between two electrodes using similar material and CdS layer as a semiconductor n-type. ReRAM memory cell is a structure such as a capacitor that is consist of semiconducting transition metal oxides or insulating exhibiting inverses resistive switching on applying voltage pulses .The mixed material was coated as a thin layer by using Spin-Coating Instrument. this structure can be switched between low- resistance state (LRS) and high resistance state(HRS);therefore, The present structure behaves as unipolar resistive switching. The resistive behavior will be affected by the top electrode area. This effect occurs more in big top electrode area (TEL=15.896mm2) where, the constituting voltage (Vforming) is inversely proportionately with respect to the top electrode area (A) .Also the (HRS) is inversely proportioned with the (A). The complying current (Icc=20mA) is used for protect the device from the damageable. The fabricated composition has many prosperities, such as Vforming = 7.3volt, Vset = 4volt, VReset = 1.7volt, Finally, the resistance ratio (Rratio) is proportioned directly with the(A) and equal Rratio=157.48 so, this ratio is enough to distinguish amongst the low resistance and the high resistance in a circuit design
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.