The essential oil derived from Citrus plants has long been used for medicinal purposes, due to its broad spectrum of therapeutic characteristics. To date, approximately 162 Citrus species have been identified, and many investigational studies have been conducted to explore the pharmacological potential of Citrus spp. oils. This study investigated the volatile constituents of essential oil distilled from the leaves of C. hystrix, C. limon, C. pyriformis, and C. microcarpa, using gas chromatography–quadrupole mass spectrometry. A total of 80 secondary compounds were tentatively identified, representing 84.88–97.99% of the total ion count and mainly comprising monoterpene (5.20–76.15%) and sesquiterpene (1.36–27.14%) hydrocarbons, oxygenated monoterpenes (3.91–89.52%) and sesquiterpenes (0.21–38.87%), and other minor chemical classes (0.10–0.52%). In particular, 27 compounds (1.19–39.06%) were detected across all Citrus species. Principal component analysis of the identified phytoconstituents and their relative quantities enabled differentiation of the Citrus leaf oils according to their species, with the loading variables contributing to these metabolic differences being identified. The Citrus leaf oils were tested for their antioxidant and antiproliferative activities using 2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. The results indicated that C. limon displayed the highest DPPH radical scavenging ability (IC50 value of 29.14 ± 1.97 mg/mL), while C. hystrix exhibited the lowest activity (IC50 value of 279.03 ± 10.37 mg/mL). On the other hand, all the Citrus oils exhibit potent antiproliferative activities against the HeLa cervical cancer cell line, with IC50 values of 11.66 μg/mL (C. limon), 20.41 μg/mL (C. microcarpa), 25.91 μg/mL (C. hystrix), and 87.17 μg/mL (C. pyriformis).
This study evaluates the applicability of enantioselective gas chromatography (eGC) and enantioselective comprehensive two-dimensional gas chromatography (eGC×GC) coupled with flame ionization detection for the stereospecific analysis of designated chiral monoterpenes within essential oils distilled from the leaves of Citrus hystrix (CH), C. limon (CL), C. pyriformis (CP), and C. microcarpa (CM). A cryogen-free solid-state modulator with a combination of enantioselective first-dimension and polar second-dimension column arrangements was used to resolve potential interferences in Citrus spp. leaf oils that can complicate the accurate determination of enantiomeric compositions. Interestingly, considerable variations were observed for the enantiomeric fractions (EFs) of the chiral terpenes. (+)-limonene was identified as the predominant enantiomer (60.3–98.9%) in all Citrus oils, (+)-linalool was the major enantiomer in CM (95.9%), (−)-terpenin-4-ol was the major isomer in CM (66.4%) and CP (61.1%), (−)-α-pinene was the dominant antipode in CL (55.5%) and CM (92.1%). CH contained (−)-citronellal (100%) as the pure enantiomer, while CL and CP have lower proportions (9.0–34.6%), and citronellal is absent in CM. The obtained enantiomeric compositions were compared and discussed with results from eGC using the same enantioselective column. To our knowledge, this work encapsulates the first report that details the EFs of these chiral monoterpenes in Citrus spp. leaf oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.