The compressive strength, shrinkage, elasticity, and electrical resistivity of the cement-soil pastes (slag, fly ash) of self-healing of cementitious concrete have been studied while adding hydrogels with nano silica (NSi) in this research. Defining the hydraulic and mechanical properties of these materials requires improvement to motivate more uptake for new buildings. Initially, examining the impact of different synthesized hydrogels on cement-soil pastes showed that solid particles in the mixtures highly affected the absorption capacity of NSi, representing the importance of direct interactions between solid particles and hydrogels in a cementitious matrix. All test results were analyzed by use of a hybridized soft computing model such as the adaptive neuro fuzzy inference system (ANFIS) and support vector regression (SVR) for precise studying and the avoidance of few empirical tests or error percentages. Subsequently, the best RMSE of ANFIS is 0.6568 and the best RMSE of SVM is 1.2564; the RMSE of ANFIS-SVM (0.5643) in the test phase is also close to zero, showing a better performance in hypothesizing self-healing soil-cementitious hydrogel materials in mine backfill. The R2 value for ANFIS-SVM is 0.9547, proving that it is a proper model for predicting the study’s goal. Electrical resistivity and compressive strength declined in the cement-soil pastes including hydrogels according to experimental outcomes; it was lowered by the increase of NSi concentration in the hydrogel. There was a decrement in the autogenous shrinkage of cement-soil pastes while adding hydrogel, depending on the NSi concentration in the hydrogels. The findings of this research are pivotal for the internal curing of cementitious materials to define the absorption of hydrogels.
Nd-YAG lasers have been successfully used in recent years as reliable heat source to surface modification of engineering materials such as laser surface re-melting. In the present study, X12 tool steel was surface modified by using pulse Nd-YAG laser technique. Laser parameters are selected of 12 J pulse energy, 15 Hz frequency, 20 mm defocus length, 6 ms pulse duration, and 5.6 mm /s mm scanning speed. These parameters were chosen after undertaking trials to give suitable parameters in this process. Optical microscopy and backscattered scanning electron microscopy (SEM) with EDS and X-ray diffraction techniques were used to analyse the microstructure changes of the surface of tool steel. Wear resistance test was achieved by using a pin on disk method. The reason for this work is to improve the wear resistance for surface layer of tool steel after changes the morphology of the structure by rapid solidification during laser re-melting. In general, the structure consists of the dendrite and cellular structures with δ ferrite formed under conditions of rapid solidification without the primary coarse carbides. After laser melting, the results of the structure at the surface layers show an increase in wear resistance.
Due to their excellent physicochemical and structural characteristics, aluminum oxide (AL 2 O 3 ) nanoparticles (AlNPs), a family of metal oxide nanoparticles, offer a variety of biological uses. Bitumen binds a high percentage (>95%) of inorganic macrometer-sized particles to provide a cohesive material suitable for use in road pavement. In this study, AL 2 O 3 was added to bitumen as a new bitumen modification to improve the fatigue and rutting performance of bitumen or the base cement asphalt cement (AC) at ratios of 5, 7, and 10% wt by weight of the cement AC. Rheological tests were performed on modified bitumen containing nanoparticles. An extreme learning machine (ELM) analyzes each test outcome. In this case, the properties of AC are greatly affected by the rise in AL 2 O 3 concentration. In comparison to the basic AC, the modified AC's viscosity rose by 90 and 104%, respectively. The outcomes also demonstrated the excellent compatibility and storage stability of both modifiers at high temperatures. A hot mix of AL 2 O 3 modified bitumen was utilized to produce hot cement asphalt samples, and moisture susceptibility was assessed. As a result,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.