Organophosphates (OPs) like dimethoate (DMT), are pesticides used worldwide, which can affect both animals and human. Whereas their toxicity is due to acetylcholinesterase inhibition, their secondary toxic effects have been related to free oxygen radical biosynthesis. The present study was designed to investigate the reprotoxic effects of DMT and the protective role of N-acetylcysteine (NAC) in male rat. DMT (20 mg/ kg/body weight) was administered daily to rats via gavage in corn oil and NAC (2 g/l) was added to drinking water for 30 days. Rats were sacrificed on the 30th day, 2 h after the last administration. Markers of testis injury (steroidogenesis impairment) and oxidative stress (lipid peroxidation, reduced glutathione, and antioxidant status) were assessed. In DMT-exposed rats, the serum level of testosterone was decreased. Further, a significant increase in lipid peroxidation level and a significant decrease in the activities of antioxidant enzymes were observed in the testis of rats during DMT intoxication. Real-time PCR (RT-PCR) analysis demonstrated a decrease in messenger RNA (mRNA) levels for testicular steroidogenic acute regulatory StAR protein, cytochrome P450scc, 3β-hydroxysteroid dehydrogenase (3β-HSD), and 17β hydroxysteroid dehydrogenase (17β-HSD) in the testis after DMT exposure. No significant changes in the oxidative stress status and selected reproductive variables were observed on CTN group, whereas NAC restored the oxidative stress and the steroidogenesis on NAC group. Dimethoate induces reprotoxicity and oxidative stress. N-acetylcysteine showed therapeutic recovery effects against dimethoate toxicity.
Malathion toxicity has been related to the inhibition of acetylcholinesterase, induction of oxidative stress, liver damage and impairment of kidney function as well as hematotoxicity. N-acetyl-l-cysteine (NAC) has been shown to possess curative effects in experimental and clinical investigations. The present study was designed to evaluate the protective effect of NAC against toxic consequences of malathion exposure in Wistar rats. Malathion was given daily to rats via oral gavage and NAC in drinking water during seven days. When malathion-treated rats were compared with control, a leukocytosis and reduced hemoglobin (HGB) content were detected. Furthermore, malathion produced a significant increase in liver enzymes such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase and creatinine kinase. In addition, a decrease in acid phosphatase activity, protein and globulin levels were observed in malathion-treated rats compared with control. Moreover, analyses of the mineral status showed a disturbance in calcium, magnesium, phosphore and iron contents of the malathion-treated rats. Interestingly, NAC showed therapeutic effects against malathion toxicity. Indeed, HGB content and all liver enzymes were restored to normal values. Finally, the use of NAC as therapeutic agent for only seven days during malathion exposure showed interesting results on tissues damages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.