We report a PopPK model for cyclosporine in Tunisian HSCT patients. Bayesian estimation using only three concentrations provides good prediction of cyclosporine exposure. These tools allow us to routinely estimate cyclosporine AUC in a clinical setting.
Measurements of Cyclosporine (CsA) systemic exposure permit its dose adjustment in allogenic stem cell transplantation recipients to prevent graft-versus-host disease. CsA LSSs were developed and validated from 60 ASCT patients via multiple linear regressions. All whole-blood samples were analyzed by fluorescence polarization immunoassay (FPIA-Axym). The 10 models that have used CsA concentrations at a single time point did not have a good fit with AUC0–12 (R2 < 0.90). C
2 and C
4 were the time points that correlated best with AUC0–12 h, R2 were respectively 0.848, and 0.897. The LSS equation with the best predictive performance (bias, precision and number of samples) utilized three sampling concentrations was AUC0–12 h = 0.607 + 1.569 × C
0.5 + 2.098 × C
2 + 3.603 × C
4 (R2 = 0.943). Optimal LSSs equations which limited to those utilizing three timed concentrations taken within 4 hours post-dose developed from ASCT recipient's patients yielded a low bias <5% ranged from 1.27% to 2.68% and good precision <15% ranged from 9.60% and 11.02%. We propose an LSS model with equation AUC0–12 h = 0.82 + 2.766 × C
2 + 3.409 × C
4 for a practical reason. Bias and precision for this model are respectively 2.68% and 11.02%.
Objectives:The primary aim of this study was to establish the population pharmacokinetic (PPK) model of bupivacaine after combined lumbar plexus and sciatic nerve blocks and secondary aim is to assess the effect of patient's characteristics including age, body weight and sex on pharmacokinetic parameters.Materials and Methods:A total of 31 patients scheduled for elective lower extremity surgery with combined lumbar and sciatic nerve block using plain bupivacaine 0.5% were included. The total bupivacaine plasma concentrations were measured before injection and after two blocks placement and at selected time points. Monitoring of bupivacaine was made by high performance liquid chromatography (HPLC) with ultraviolet detection. Non-linear mixed effects modeling was used to analyze the PPK of bupivacaine.Results:One compartment model with first order absorption, two input compartments and a central elimination was selected. The Shapiro-Wilks test of normality for normalized prediction distribution errors for this model (P = 0.156) showed this as a valid model. The selected model predicts a population clearance of 930 ml/min (residual standard error [RSE] = 15.48%, IC 95% = 930 ± 282.24) with inter individual variability of 75.29%. The central volume of distribution was 134 l (RSE = 12.76%, IC = 134 ± 33.51 L) with inter individual variability of 63.40%. The absorption of bupivacaine in two sites Ka1 and Ka2 were 0.00462/min for the lumbar site and 0.292/min for the sciatic site. Age, body weight and sex have no effect on the bupivacaine pharmacokinetics in this studied population.Conclusion:The developed model helps us to assess the systemic absorption of bupivacaine at two injections sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.