Early growth response factor 1 (EGR1) is a transcription factor that is mainly involved in the processes of tissue injury, immune responses, and fibrosis. Recent studies have shown that EGR1 is closely related to the initiation and progression of cancer and may participate in tumor cell proliferation, invasion, and metastasis and in tumor angiogenesis. Nonetheless, the specific mechanism whereby EGR1 modulates these processes remains to be elucidated. This review article summarizes possible mechanisms of action of EGR1 in tumorigenesis and tumor progression and may serve as a reference for clinical efficacy predictions and for the discovery of new therapeutic targets.
This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors and has high morbidity and mortality rates. Central nervous system (CNS) metastasis is one of the most frequent complications in patients with NSCLC and seriously affects the quality of life (QOL) and overall survival (OS) of patients, with a median OS of untreated patients of only 1–3 months. There are various treatment methods for NSCLC CNS metastasis, including surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy, which do not meet the requirements of patients in terms of improving OS and QOL. There are still many problems in the treatment of NSCLC CNS metastasis that need to be solved urgently. This review summarizes the research progress in the treatment of NSCLC CNS metastasis to provide a reference for clinical practice.
Cytokine release syndrome (CRS) is a major obstacle to the widespread clinical application of chimeric antigen receptor (CAR) T cell therapies. CRS can also be induced by infections (such as SARS-CoV-2), drugs (such as therapeutic antibodies), and some autoimmune diseases. Myeloid-derived macrophages play key roles in the pathogenesis of CRS, and participate in the production and release of the core CRS cytokines, including interleukin (IL)-1, IL-6, and interferon-γ. In this review, we summarize the roles of macrophages in CRS and discuss new developments in macrophage activation and the related mechanisms of cytokine regulation in CRS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.