PurposeThe car body stiffness of express freight sliding side covered wagon decreased for the sliding and the resonance vibration based on the flexible car body has affected the dynamics performances. Dynamic loading will cause fatigue cracks and eventually lead to fatigue failure of the car body. This paper aims to investigate the influence of car body flexibility on the evaluation of the failure.Design/methodology/approachIn this paper, the railway vehicles random analysis procedure (RVRAP) is employed to study the fatigue failure of the rigid-flexibility model. Following the analysis process, the rigid-flexibility model is established and four contrastive schemes for simulation analysis are designed. To verify the results, an experimental test using the real car body structure on the vibration test plant is carried out; the RMS of dynamic stress is obtained and compared with the simulation results.FindingsThe results show that the flexibility of the car body has a crucial influence on the fatigue life.Originality/valueThe reliability is verified regarding the use of RVRAP at an appropriate stage on the antifatigue design of the vehicle.
PurposeThe purpose of this paper is to propose an improved method which can shorten the calculation time and improve the calculation efficiency under the premise of ensuring the calculation accuracy for calculating the response of dynamic systems with periodic time-varying characteristics.Design/methodology/approachAn improved method is proposed based on Runge–Kutta method according to the composition characteristics of the state space matrix and the external load vector formed by the reduction of the dynamic equation of the periodic time-varying system. The recursive scheme of the holistic matrix of the system using the Runge–Kutta method is improved to be the sub-block matrix that is divided into the upper and lower parts to reduce the calculation steps and the occupied computer memory.FindingsThe calculation time consumption is reduced to a certain extent about 10–35% by changing the synthesis method of the time-varying matrix of the dynamics system, and the method proposed of paper consumes 43–75% less calculation time in total than the original Runge–Kutta method without affecting the calculation accuracy. When the ode45 command that implements the Runge–Kutta method in the MATLAB software used to solve the system dynamics equation include the time variable which cannot provide its specific analytic function form, so the time variable value corresponding to the solution time needs to be determined by the interpolation method, which causes the calculation efficiency of the ode45 command to be substantially reduced.Originality/valueThe proposed method can be applied to solve dynamic systems with periodic time-varying characteristics, and can consume less calculation time than the original Runge–Kutta method without affecting the calculation accuracy, especially the superiority of the improved method of this paper can be better demonstrated when the degree of freedom of the periodic time-varying dynamics system is greater.
PurposeTo address the lack of data in this field and determine the relationship between the coefficient of friction and the interference between locomotive wheels and axles, this study evaluates the theoretical relationship between the coefficient of friction and the interference under elastic deformation.Design/methodology/approachWhen using numerical analyses to study the mechanical state of the contacting components of the wheels and axle, the interference between the axle parts and the coefficient of friction between the axle parts are two important influencing factors. Currently, as the range of the coefficient of friction between the wheel and axle in interference remains unknown, it is generally considered that the coefficient of friction is only related to the materials of the friction pair; the relationship between the interference and the coefficient of friction is often neglected.FindingsA total of 520 press-fitting experiments were conducted for 130 sets of wheels and axles of the HXD2 locomotive with 4 types of interferences, in order to obtain the relationship between the coefficient of friction between the locomotive wheel and axle and the amount of interference. These results are expected to serve as a reference for selecting the coefficient of friction when designing axle structures with the rolling stock, research on the press-fitting process and evaluations of the fatigue life.Originality/valueThe study provides a basis for the selection of friction coefficient and interference amount in the design of locomotive wheels and axles.
In this paper, the discrepancy between the calculated and actual fatigue life distribution trend of the axles of railway vehicle structures is corrected. The calculations were made using the traditional fixed-axle model in which the wheelset rotation is neglected in random vibration analysis. A correction method is proposed, which is based on the original methods of fatigue life analysis of the axle structure of railway vehicles (i.e. the pseudo-excitation method and finite element model) and according to the characteristics of the symmetrical axle structure and the actual rotational operation state of the railway vehicle wheelset. Taking a locomotive system as an example, the minimum fatigue life calculated by the fixed-axle model is only 0.81 million km. In contrast, the minimum fatigue life calculated by the proposed method is 5.85 million km, which is consistent with the actual fatigue life of the axle. The position of the minimum fatigue life is also consistent with the actual position. The reliability of the proposed method for calculating the random fatigue life of the axle structure is illustrated. The influence and contribution of the prestress generated by axle press-fitting and vehicle serving weight of the railway vehicle acting on the axle on the axle fatigue life were studied. The results show that the prestress has a different influence on the fatigue life reduction of the wheelset. The minimum fatigue life reduction can reach 16.68% when all the prestresses are considered. Therefore, the influence of prestress should be considered in the design of railway vehicle axle structures. The idea of considering prestress should be proposed when revising axle standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.