Two‐dimensional transition metal dichalcogenides exhibit remarkable optical properties. However, their applications in electronics and photonics are severely limited by the intrinsically low absorption and emission rates. Here, the photoluminescence (PL) enhancement by integrating the monolayer MoSe2 into an Ag nanowire‐on‐mirror (NWoM) nanocavity is reported. From the dark‐field scattering spectrum, a Fano resonance resulting from the coupling between discrete exciton state of MoSe2 and broad plasmon mode of nanocavity is observed. This Fano resonance, as a characteristic of intermediate plasmon–exciton coupling, shows remarkable ability to accelerate emission rate of MoSe2. Furthermore, the nanocavity with multiple resonances provides an excellent spatial mode overlap at excitation and emission wavelengths that affords the intriguing opportunity to resonantly enhance the absorption and PL quantum yield at the same location. The combination of Fano resonance and mode matching allows the attainment of over 1800‐fold PL enhancement. These results provide a facile way to enhance the PL intensity of monolayer MoSe2 that may facilitate highly efficient optoelectronic devices.
Long-life pavement construction is an important research direction for sustainable road development. Fatigue cracking of aging asphalt pavement is one of the main reasons that affects its service life, and improving the fatigue resistance of aging asphalt pavement has become a key factor in promoting the development of long-life pavement. In order to enhance the fatigue resistance of aging asphalt pavement, hydrated lime and basalt fiber were selected to prepare a modified asphalt mixture. The resistance to fatigue is evaluated by the four-point bending fatigue test and self-healing compensation test, based on the energy method, the phenomenon-based approach, and other methods. The results of each method of evaluation were also compared and analyzed. The results indicate that the incorporation of hydrated lime can improve the adhesion of the asphalt binder, while the incorporation of basalt fiber can stabilize the internal structure. When incorporated alone, basalt fiber has no noticeable effect, while hydrated lime significantly improves the fatigue performance of the mixture after thermal aging. Mixing both ingredients produced the best improvement effect under various conditions, with a fatigue life improvement of 53%. In the multi-scale evaluation of fatigue performance, it was found that the initial stiffness modulus was unsuitable as a direct evaluation index of fatigue performance. Using the fatigue damage rate or the stable value of dissipated energy change rate as an evaluation index can clearly characterize the fatigue performance of the mixture before and after aging. The self-healing rate and self-healing decay index clearly reflected the fatigue damage healing process under repeated loading and could be used as relevant indices for evaluating the new-scale fatigue performance of asphalt mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.