Recent studies have demonstrated that disturbances in the gut microbiota and microbiota -derived metabolites contribute to the pathogenesis of Parkinson’s disease (PD), suggesting that probiotic treatments that restore them may delay disease progression. This study aimed to examine the attenuating efficacy of L. plantarum CCFM405 and the potential mechanisms in mice with rotenone-induced PD. Our results indicate that L. plantarum CCFM405 ameliorated rotenone-induced motor deficits and constipation, decreased dopaminergic neuronal death, reduced intestinal inflammation and neuroinflammation, and raised dopamine levels, 5-HT, and associated metabolites in the striatal region of the brain in mice with PD. Sequencing of 16S rRNA from fecal microbiota revealed that L. plantarum CCFM405 normalized the gut bacterial composition in mice with PD, as evidenced by the increased relative abundance of the following genus, Bifidobacterium, Turicibacter, and Faecalibaculum, and decreased relative abundance of Alistipes, Bilophila, Akkermansia, and Escherichia-Shigella. The PICRUSt-predicted gut microbiota function revealed that L. plantarum CCFM405 enhanced the biosynthesis of amino acid pathways, particularly valine, leucine, and isoleucine (branched-chain amino acids, BCAAs). A non-metabolomic analysis of the serum and feces showed that L. plantarum CCFM405 markedly increased the levels of BCAAs. Pathway enrichment analysis based on the KEGG database further suggested that L. plantarum CCFM405 supplementation can promote BCAAs biosynthesis. Collectively, L. plantarum CCFM405 can help to prevent rotenone-induced PD by modulating the gut microbiota–metabolite axis. BCAAs may play a dominant role in L. plantarum CCFM405-associated neuroprotection in PD mice. This probiotic could be utilized as a potential food supplement in the management of PD.
Antibiotic-associated diarrhea (AAD) is a self-limiting disease mediated by antibiotic therapy. In clinical practice, several types of probiotics are used in treating AAD, but minimal research has been done on Bacteroides-based microecologics. Our aim was to evaluate the therapeutic effects of Bacteroidetes uniformis FGDLZ48B1, B. intestinalis FJSWX61K18, Bifidobacterium adolescentis FHNFQ48M5, and B. bifidum FGZ30MM3 and their mixture on AAD in mice. The lincomycin hydrochloride-induced AAD models were gavaged with a single strain or a probiotic mixture for a short period to assess the changes in colonic histopathology and cytokine concentrations, intestinal epithelial permeability and integrity, short-chain fatty acids (SCFAs), and the diversity of intestinal microbiota. Our data indicated that both the sole use of Bacteroides and the combination of Bacteroides and Bifidobacterium beneficially weakened systemic inflammation, increased the recovery rate of tissue structures, increased the concentrations of SCFAs, and restored the gut microbiota. Moreover, the probiotic mixture was more effective than the single strain. Specifically, B. uniformis FGDLZ48B1 combined with the B. adolescentis FHNFQ48M5 group was more effective in alleviating the pathological features of the colon, downregulating the concentrations of interleukin (IL)-6, and upregulating the expression of occludin. In summary, our research suggests that administration of a mixture of B. uniformis FGDLZ48B1 and B. adolescentis FHNFQ48M5 is an effective approach for treating AAD.
Inflammatory bowel disease (IBD) is a heterogeneous group of diseases associated with chronic inflammation of the intestinal tract, and is highly prevalent worldwide. Although its origin is not yet fully understood, new evidence emphasizes that environmental factors, especially dietary factors and intestinal microbiota disorders are key triggers of IBD. Probiotics, such as Lactobacillaceae spp., play an essential role in human health as they exert beneficial effects on the composition of the human gastrointestinal microbial community and immune system. Probiotic-based therapies have been shown to be effective in alleviating IBD. Among these, Lactobacillaceae rhamnosus is one of the most widely used strains. L. rhamnosus is widely present in the intestines of healthy individuals; it regulates the intestinal immune system and reduces inflammation through a variety of mechanisms. The purpose of this study was to identify scientific evidence related to L. rhamnosus and IBD, review and summarize the results, and discuss the possible mechanisms of action as a starting point for future research on IBD treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.