Long-term exposure to UVB (280–320 nm) can cause oxidative skin damage, inflammatory injury, and skin cancer. Research on nicotinamide mononucleotide (NMN) and lactic acid bacteria (LAB) with regard to antioxidation, anti-inflammation, and prevention of other age-related diseases has received increasing attention. In the present study, the in vitro antioxidant analysis showed that NMN combined with Lactobacillus fermentum TKSN041 (L. fermentum TKSN041) has a high scavenging ability on hydroxyl (OH), 2, 2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) diammonium salt (ABTS) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH), and it also possess a good total antioxidant capacity. The animal experimental results show that NMN combined with LAB maintained normal liver morphology of mice and reduced pathological damage to murine skin. NMN combined with LAB significantly increased the serum levels of total superoxide dismutase (T-SOD), catalase (CAT), and interleukin (IL)-10, but reduced the levels of malondialdehyde, advanced glycation end products, tumor necrosis factor (TNF)-α, and IL-6. NMN combined with LAB increased T-SOD, CAT, IL-10, Na+-K+-ATPase, and NAD+ levels in the skin, but reduced TNF-α level in the skin. NMN combined with LAB increased the mRNA expression levels of SOD1, CAT, glutathione (GSH), inhibitor of NF-κB (IκB-α), IL-10, AMP-activated protein kinase (AMPK), adaptor protein, phosphotyros ineinteraction, PH domain and leucine zipper containing 1 (APPL1), peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α), and forkhead transcription factor O (FOXO) in the skin and liver, but decreased the mRNA expression levels of nuclear factor (NF)-κBp65, TNF-α, IL-6, and rapamycin target protein (mTOR). NMN combined with LAB increased the protein expression levels of AMPK, IκB-α, SOD1, and CAT in the skin tissues and reduced protein expression of NF-κBp65. NMN combined with L. fermentum TKSN041 improved murine skin damage caused by UVB irradiation, and the protective mechanism may be related to activation of the AMPK signaling pathway. The results of this study are expected to provide a reference for preventing and the treating skin photoaging.
Ultraviolet light is an important environmental factor that induces skin oxidation, inflammation, and other diseases. Nicotinamide mononucleotide (NMN) has the effect of antioxidation and improving various physiological processes. This study explores the protective effect of NMN monomers given via intraperitoneal injection on UVB-induced photodamage. Methods:We used a murine model of UVB-induced photodamage to evaluate the effect of an NMN monomer on photoaging skin by assessing skin and liver tissue sections, serum and skin oxidative stress levels, inflammatory markers, mRNA expression, and protein expression of skin-and liver-related genes. Results:The results showed that NMN treatment blocked UVB-induced photodamage in mice, maintaining normal structure and amount of collagen fibers, normal thickness of epidermis and dermis, reducing the production of mast cells, and maintaining complete organized skin structure. NMN intraperitoneal injection also maintained the normal morphology of the mouse liver after UVB exposure. Meanwhile, NMN intraperitoneal injection was found to increase antioxidant ability and regulate the proinflammatory response of the skin and liver to UVB irradiation by enhancing the activity of antioxidant enzymes, release of anti-inflammatory cytokines, reduction of hydrogen peroxide production (H 2 O 2 ), and decreased inflammatory cytokines. Furthermore, RT-qPCR results indicated that NMN reduced oxidative stress of skin and liver by promoting the activation of the AMP-activated protein kinase (AMPK) signaling pathway and further increasing the expression of downstream antioxidant genes of AMPK. RT-qPCR results also revealed that NMN treatment could downregulate the mRNA expression of interleukin (IL)-6, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α, and upregulate NF-kappa-B inhibitor-α (IκB-α) and interleukin (IL)-10 by inhibiting the activation of nuclear factor-κBp65 (NFκB-p65). Finally, NMN upregulated AMPK, IκB-α, SOD1, and CAT in the skin and downregulated NF-κBp65 protein expression, which is in line with the RT-qPCR results. Conclusion: Based on the above results, NMN monomer treatment with intraperitoneal injection also block the photodamage caused by UVB irradiation in mice by regulating the oxidative stress response and inflammatory response.
The aim of this study is to evaluate the changes in soy isoflavones and peptides in soy milk after lactic acid bacterial fermentation, and explore the positive effects of fermented soy milk on an oxidative aging mouse model induced with D-galactose. We found that free soybean isoflavones and peptides increased after soy milk was fermented by Lactobacillus fermentum CQPC04. The in vivo results indicated that L. fermentum CQPC04-fermented soy milk enhanced the organ index of the liver and spleen, and improved the pathological morphology of the liver, spleen, and skin. L. fermentum CQPC04-fermented soy milk increased the enzymatic activity of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), and catalase (CAT), increased glutathione (GSH), but decreased the levels of nitric oxide (NO) and malondialdehyde (MDA) in serum, liver, and brain tissues of oxidative aging mice. The above mentioned fermented soy milk also increased the levels of collagen I (Col I), hyaluronic acid (HA), and collagen III (Col III), and decreased the levels of advanced glycation End products (AGEs) and hydrogen peroxide (H2O2). The RT-qPCR results showed that L. fermentum CQPC04-fermented soy milk upregulated the mRNA expression of nuclear factor erythroid 2?related factor (Nrf2), heme oxygenase-1 (HMOX1), quinone oxido-reductase 1 (Nqo1), neuronal nitric oxide synthase (NOS1), endothelial nitric oxide synthase (NOS3), Cu/Zn–superoxide dismutase (Cu/Zn-SOD), Mn–superoxide dismutase (Mn-SOD), and CAT, but downregulated the expression of inducible nitric oxide synthase (NOS2) and glutamate cysteine ligase modifier subunit (Gclm) in liver and spleen tissues. Lastly, the fermented soy milk also increased the gene expression of Cu/Zn-SOD, Mn-SOD, CAT, GSH-Px, matrix metalloproteinases 1 (TIMP1), and matrix metalloproteinases 2 (TIMP2), and decreased the expression of matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) in skin tissue. In conclusion, L. fermentum CQPC04-fermented soy milk was able to satisfactorily delay oxidative aging effects, and its mechanism may be related to the increase in free soy isoflavones and peptides.
As ground simulation equipment, flight simulator plays an important role in pilot teaching and airworthiness compliance verification with the continuous progress of simulation technology. Fidelity is an important index to measure simulator and real flight. This paper studies the objective evaluation of fidelity of flight simulator. Through establishing evaluation loop model and evaluation index, the method of fidelity calculation is obtained. Finally, the effectiveness of the evaluation method is verified through specific missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.