The current concept of epigenetic repression is based on one repressor unit corresponding to one silent gene. This notion, however, cannot adequately explain concurrent silencing of multiple loci observed in large chromosome regions. The long-range epigenetic silencing (LRES) can be a frequent occurrence throughout the human genome. To comprehensively characterize the influence of estrogen signaling on LRES, we analyzed transcriptome, methylome, and estrogen receptor alpha (ESR1)-binding datasets from normal breast epithelia and breast cancer cells. This “omics” approach uncovered 11 large repressive zones (range, 0.35∼5.98 megabases), including a 14-gene cluster located on 16p11.2. In normal cells, estrogen signaling induced transient formation of multiple DNA loops in the 16p11.2 region by bringing 14 distant loci to focal ESR1-docking sites for coordinate repression. However, the plasticity of this free DNA movement was reduced in breast cancer cells. Together with the acquisition of DNA methylation and repressive chromatin modifications at the 16p11.2 loci, an inflexible DNA scaffold may be a novel determinant used by breast cancer cells to reinforce estrogen-mediated repression.
Purpose: Therapeutic strategies against hormonal receptorpositive (HR þ
BackgroundAn emerging Hi-C protocol has the ability to probe three-dimensional (3D) architecture and capture chromatin interactions in a genome-wide scale. It provides informative results to address how chromatin organization changes contribute to disease/tumor occurrence and progression in response to stimulation of environmental chemicals or hormones.ResultsIn this study, using MCF7 cells as a model system, we found estrogen stimulation significantly impact chromatin interactions, leading to alteration of gene regulation and the associated histone modification states. Many chromosomal interaction regions at different levels of interaction frequency were identified. In particular, the top 10 hot regions with the highest interaction frequency are enriched with breast cancer specific genes. Furthermore, four types of E2-mediated strong differential (gain- or loss-) chromosomal (intra- or inter-) interactions were classified, in which the number of gain-chromosomal interactions is less than the number of loss-chromosomal interactions upon E2 stimulation. Finally, by integrating with eight histone modification marks, DNA methylation, regulatory elements regions, ERα and Pol-II binding activities, associations between epigenetic patterns and high chromosomal interaction frequency were revealed in E2-mediated gene regulation.ConclusionsThe work provides insight into the effect of chromatin interaction on E2/ERα regulated downstream genes in breast cancer cells.
Recent genome-wide profiling reveals highly complex regulation networks among ERα and its targets. We integrated estrogen (E2)-stimulated time-series ERα ChIP-seq and gene expression data to identify the ERα-centered transcription factor (TF) hubs and their target genes, and inferred the time-variant hierarchical network structures using a Bayesian multivariate modeling approach. With its recurrent motif patterns, we determined three embedded regulatory modules from the ERα core transcriptional network. The GO analyses revealed the distinct biological function associated with each of three embedded modules. The survival analysis showed the genes in each module were able to render a significant survival correlation in breast cancer patient cohorts. In summary, our Bayesian statistical modeling and modularity analysis not only reveals the dynamic properties of the ERα-centered regulatory network and associated distinct biological functions, but also provides a reliable and effective genomic analytical approach for the analysis of dynamic regulatory network for any given TF.
Recruitment of transcription machinery to target promoters for aberrant gene expression has been well studied, but underlying control directed by distant-acting enhancers remains unclear in cancer development. Our previous study demonstrated that distant estrogen response elements (DEREs) located on chromosome 20q13 are frequently amplified and translocated to other chromosomes in ERα-positive breast cancer cells. In this study, we used three-dimensional interphase fluorescence in situ hybridization to decipher spatiotemporal gathering of multiple DEREs in the nucleus. Upon estrogen stimulation, scattered 20q13 DEREs were mobilized to form regulatory depots for synchronized gene expression of target loci. A chromosome conformation capture assay coupled with chromatin immunoprecipitation further uncovered that ERα-bound regulatory depots are tethered to heterochromatin protein 1 (HP1) for coordinated chromatin movement and histone modifications of target loci, resulting in transcription repression. Neutralizing HP1 function dysregulated the formation of DERE-involved regulatory depots and transcription inactivation of candidate tumor-suppressor genes. Deletion of amplified DEREs using the CRISPR/Cas9 genomic-editing system profoundly altered transcriptional profiles of proliferation-associated signaling networks, resulting in reduction of cancer cell growth. These findings reveal a formerly uncharacterized feature wherein multiple copies of the amplicon congregate as transcriptional units in the nucleus for synchronous regulation of function-related loci in tumorigenesis. Disruption of their assembly can be a new strategy for treating breast cancers and other malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.