Hamacher operation is a generalization of the algebraic and Einstein operation and expresses a family of binary operation in the unit interval [0,1]. Heronian mean can deal with correlations of different criteria or input arguments and does not bring out repeated calculation. The normal intuitionistic fuzzy numbers (NIFNs) can depict normal distribution information in practical decision making. A decision-making problem was researched under the NIFN environment in this study, and a new multi-criteria group decision-making (MCGDM) approach is herein introduced on the basis of Hamacher operation. Firstly, according to Hamacher operation, some operational laws of NIFNs are presented. Secondly, it is noted that Heronian mean not only takes into account mutuality between the attribute values once, but also considers the correlation between input argument and itself. Therefore, in order to aggregate NIFN information, we developed some operators and studied their properties. These operators include Hamacher Heronian mean (NIFHHM), Hamacher weighted Heronian mean (NIFHWHM), Hamacher geometric Heronian mean (NIFHGHM), and Hamacher weighted geometric Heronian mean (NIFHWGHM). Furthermore, we applied the proposed operators to the MCGDM problem and developed a new MCGDM approach. The characteristics of this new approach are that: (1) it is suitable for making a decision under the NIFN environment and it is more reasonable for aggregating the normal distribution data; (2) it utilizes Hamacher operation to provide an effective and powerful MCGDM algorithm and to make more reliable and more flexible decisions under the NIFN circumstance; (3) it uses the Heronian mean operator to deal with interrelations between the attributes or input arguments, and it does not bring about repeated calculation. Therefore, the proposed method can describe the interaction of the different criteria or input arguments and offer some reasonable and reliable MCGDM aggregation operators, which can open avenues for decision making and broaden perspectives of the decision experts. Lastly, an application is given for showing the effectiveness and feasibility of the approach presented in this paper.
Hamacher operation which is generalization of the Algebraic and Einstein operation, can widely provide a large number of arithmetical operation with respect to uncertainty information, and Heronian mean can deal with correlations of the input arguments or different criteria and don’t make calculation redundancy, meanwhile, the normal intuitionistic fuzzy numbers (NIFNs) can depict distinctively normal distribution information in practical decision making. In this paper, a multi-criteria group decision-making (MCGDM) problem is researched under the NIFNs environment, and a new MCGDM approach is introduced on the basis of the Hamacher operation. Firstly, according to Hamacher t-conorm and t-norm, some operational laws of NIFNs are presented. Secondly, it is noticed that Heronian mean can’t only once take into account mutual relation between attribute values once, but also consider the correlation between input argument and itself. Therefore, we develop some operators and study their properties in order to aggregate normal intuitionistic fuzzy numbers information, these operators include Hamacher Heronian mean (NIFHHM), Hamacher weighted Heronian mean (NIFHWHM), Hamacher geometric Heronian mean (NIFHGHM) and Hamacher weighted geometric Heronian mean (NIFHWGHM). Furthermore, we apply the proposed operators to the MCGDM problem and present a new method. The main characteristics of this new method involve that: (1) it is suitable to make decision under the normal intuitionistic fuzzy numbers environment and more reliable and reasonable to aggregate the normal distribution information. (2) it utilizes Hamacher operation which can provide more reliable and flexible decision-making results and offer an effective and powerful mathematic tool for the MAGDM under uncertainty. (3) it uses the Heronian mean operator which can considers relationships between the input arguments or the attributes and don’t brings subsequently about redundancy. Lastly, an application is given for showing the feasibility and effectiveness of the presented method in this paper.
Applying the generalized projection operator, we introduce a modified subgradient extragradient algorithm in Banach spaces for a variational inequality involving a monotone Lipschitz continuous mapping which is more general than an inversestrongly-monotone mapping. Weak convergence of the iterative algorithm is also proved. An advantage of the algorithm is the computation of only one value of the inequality mapping and one projection onto the admissible set per one iteration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.