ObjectiveTo characterize the molecular and phenotypic basis of a severe slow‐channel congenital myasthenic syndrome (SCCMS).MethodsIntracellular and single‐channel recordings from patient endplates; alpha‐bungarotoxin binding studies; direct sequencing of AChR genes; microsatellite analysis; kinetic analysis of AChR activation; homology modeling of adult human AChR structure.ResultsAmong 24 variants reported to cause SCCMS only two appear in the AChR δ‐subunit. We here report a 16‐year‐old patient harboring a novel δL273F mutation (δL294F in HGVS nomenclature) in the second transmembrane domain (M2) of the AChR δ subunit. Kinetic analyses with ACh and the weak agonist choline indicate that δL273F prolongs the channel opening bursts 9.4‐fold due to a 75‐fold increase in channel gating efficiency, whereas a previously identified εL269F mutation (εL289F in HGVS nomenclature) at an equivalent location in the AChR ε‐subunit prolongs channel opening bursts 4.4‐fold due to a 30‐fold increase in gating efficiency. Structural modeling of AChR predicts that inter‐helical hydrophobic interactions between the mutant residue in the δ and ε subunit and nearby M2 domain residues in neighboring α subunits contribute to structural stability of the open relative to the closed channel states.InterpretationThe greater increase in gating efficiency by δL273F than by εL269F explains why δL273F has more severe clinical effects. Both δL273F and εL269F impair channel gating by disrupting hydrophobic interactions with neighboring α‐subunits. Differences in the extent of impairment of channel gating in δ and ε mutant receptors suggest unequal contributions of ε/α and δ/α subunit pairs to gating efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.