BackgroundTo investigate the relationship between time elapsed since completion of radiotherapy (RT) and quality of life (QOL) of patients with breast cancer.MethodsA total of 300 patients with breast cancer were treated at the First Affiliated Hospital of Anhui Medical University between January 2013 and April 2016. Of these, 212 patients were included in the study. Patients were divided into 4 groups based on the time elapsed since completion of RT. The generic cancer questionnaire, EORTC QLQ-30, and the breast cancer-specific questionnaire, QLQ-BR23, were used to assess the QOL.ResultsAnalysis of time elapsed since completion of RT and QOL revealed changes in the scores for role function with passage of time; the third year’s scores were the highest. Pain symptoms during the 3rd and 4th years after RT were lower than those during the 1st and 2nd years after RT; scores for financial difficulties fluctuated with passage of time; perception of own body scores improved within first 3 years; sexual activity and enjoyment of sexual activity showed a significant decrease during the 2nd to 4th year post RT. Scores pertaining to concerns about future state of health showed a significant increase during the 2nd to 4th year after RT, while breast symptoms score showed fluctuations with passage of time.ConclusionsSocial function, pain symptoms, and concerns about future state of health tended to improve with passage of time after RT. Other scales showed no correlation with time elapsed since completion of RT.
Human papillomavirus (HPV) 16 E6 has been proved to increase the radiosensitivity and lead to the EGFR overexpression in cervical cancer cells. In this study, to investigate the inhibition of nimotuzumab-mediated EGFR blockade combined with radiotherapy, we established a C33A cervical squamous cell line overexpressed HPV16-E6 and a nude mouse model bearing these cell lines. The CCK-8 assay was used to detect the effects of various treatments on the proliferation of C33A cells. Flow cytometry was used to detect the rates of apoptosis and cell cycle arrest. Gene transcription and protein expression were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. Immunohistochemical staining was used to evaluate protein expression in tumor tissue. We revealed that E6-overexpressing C33A cells grew faster and were more sensitive to radiotherapy than control cells in vitro and in viv o. The expression levels of EGFR, as well as those of downstream signaling molecules AKT and ERK 1/2, were significantly upregulated in C33A cells that overexpressed E6. We observed that nimotuzumab combined with radiotherapy could enhance the inhibition of C33A cell growth induced by E6, both in vitro and in vivo . We also observed enhanced effect after combination on G2/M cell cycle arrest and apoptosis in E6-overexpressing C33A cells. Furthermore, the combined therapy of nimotuzumab and radiation remarkably reduced the protein expression levels of EGFR, AKT, ERK 1/2 in vitro , and in vivo . In conclusion, HPV16 E6 expression is positively correlated with levels of EGFR, AKT, and ERK 1/2 protein expression. The combined treatment with nimotuzumab and radiotherapy to enhance radiosensitivity in E6-positive cervical squamous cell carcinoma was related to enhanced G2/M cell cycle arrest and caspase-related apoptosis.
The purpose of the study was to examine the nanoscale distribution and density of the VEGFR-2 membrane receptor on the endothelial cell surface of glioma microvasculature. Immunofluorescence and atomic force microscopy combined with immunogold labeling techniques were used to characterize and determine the position of the glioma microvasculature endothelial cell surface receptor VEGFR-2. We aimed to indirectly detect the distribution of VEGFR-2 on the cell membrane at the nanoscale level and to analyze VEGFR-2 quantitatively. Immunofluorescence imaging showed a large amount of VEGFR-2 scattered across the endothelial cell surface; atomic force microscopy imaging also showed two globular structures of different sizes scattered across the endothelial cell surface. The difference between the average diameter of the small globular structure outside the cell surface (43.67 ± 5.02 nm) and that of IgG (44.61 ± 3.19 nm) was not statistically significant (P > 0.05). The three-dimensional morphologies of the small globular structure outside the cell surface and IgG were similar. The difference between the average diameter of the large globular structure outside the cell surface (74.19 ± 9.10 nm) and that of IgG-SpA-CG (74.54 ± 15.93 nm) was also not statistically significant (P > 0.05). The three-dimensional morphologies of this large globular structure outside the cell surface and IgG-SpA-CG were similar. The total density of these two globular structures within the unit area was 92 ± 19 particles μm(2). No globular structures were seen on the cell surface in the control group. The large globular structure on the surface of glioma microvascular endothelial cells was categorized as a VEGFR-2-IgG-SpA-CG immune complex, whereas the small globular structure was categorized as a VEGFR-2-IgG immune complex. The positions of the globular structures were the same as the positions of the VEGFR-2 molecules. A large amount of VEGFR-2 was scattered across glioma microvascular endothelial cell surfaces; the receptor density was about 92 per square micron.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.