This work presents a novel one-layer nonhydrostatic formulation and model for nearshore waves. The proposed governing equations define velocities and pressures at arbitrary distances from the still water and only contain spatial derivatives of maximum second order. The formulation can be unified into the existing nonhydrostatic models by defining the variables at the middle depth and neglecting certain additional terms. A Stokes-type Fourier analysis was performed to analyze the formulations' properties and determine the location of variables. The proposed formulation exhibited a clear superiority in describing both the linear and nonlinear properties of the coastal waves. The equations were numerically solved using a hybrid-finite, volume-finite difference scheme. The resulting model accurately described the wave-breaking and runup processes that occurred due to the adoption of a shock-capturing scheme and seabed elevation reconstruction. The suggested novel numerical model was validated against two theoretical benchmark tests and three wave transformation experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.