In this paper, we propose an AC optimal power flow (ACOPF) model considering distributed flexible AC transmission system (D-FACTS) devices, in which the reactance of D-FACTS equipped lines are introduced as decision variables. This is motivated by increasing interests in using D-FACTS devices to address system operational and cyber-security concerns. First, D-FACTS devices can be incorporated in real-time operations for economic benefits such as managing power congestions and reducing system losses. Second, D-FACTS devices can be utilized by moving target defense (MTD), an emerging concept against cyber-attacks, to prevent attackers from knowing true system configurations. Therefore, system operators can use the proposed ACOPF model to achieve economic benefits and provide the setpoints of D-FACTS devices for MTD at the same time. In addition, we rigorously derive the gradient and Hessian matrices of the objective function and constraints, which are further used to build an interior-point solver of the proposed ACOPF. Numerical results on the IEEE 118-bus transmission system show the validity of the proposed ACOPF model as well as the efficacy of the interior-point solver in minimizing system losses and generation costs. <br>
In this paper, we propose an AC optimal power flow (ACOPF) model considering distributed flexible AC transmission system (D-FACTS) devices, in which the reactance of D-FACTS equipped lines are introduced as decision variables. This is motivated by increasing interests in using D-FACTS devices to address system operational and cyber-security concerns. First, D-FACTS devices can be incorporated in real-time operations for economic benefits such as managing power congestions and reducing system losses. Second, D-FACTS devices can be utilized by moving target defense (MTD), an emerging concept against cyber-attacks, to prevent attackers from knowing true system configurations. Therefore, system operators can use the proposed ACOPF model to achieve economic benefits and provide the setpoints of D-FACTS devices for MTD at the same time. In addition, we rigorously derive the gradient and Hessian matrices of the objective function and constraints, which are further used to build an interior-point solver of the proposed ACOPF. Numerical results on the IEEE 118-bus transmission system show the validity of the proposed ACOPF model as well as the efficacy of the interior-point solver in minimizing system losses and generation costs. <br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.