Laser cladding coating has many advantages in surface modification, such as a small heat-affected zone, and good metallurgical bonding. However, some serious problems such as pores, and poor forming quality still exist in the coating. To suppress these problems, a novel process of ultrasonic vibration-assisted laser cladding process was adopted to in-situ synthesize TiC/TiB composite ceramic coating on the surface of titanium alloy. Results showed that the introduction of ultrasonic vibration effectively improved the surface topography of the coating, reduced the number of pores in the coating, refined the crystal grains of the coating, decreased the residual tensile stress in the coating, and increased the micro-hardness of the coating. The tribological properties of the coating were significantly improved by the ultrasonic vibration, the wear resistance of the coating fabricated with ultrasonic vibration at power of 400 W increased about 1.2 times compared with the coating fabricated without ultrasonic vibration, and the friction coefficient decreased by 50%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.