Using first-principles calculations, we investigate the effect of molecular doping and sulfur vacancy on the electronic properties and charge modulation of monolayer MoS2. It is found that tetrathiafulvalene and dimethyl-p-phenylenediamine molecules are effective donors, whereas tetracyanoethylene (TCNE) and tetracyanoquinodimethane (TCNQ) are effective acceptors, and all these molecules are able to shift the work function of MoS2. For MoS2 containing sulfur vacancies, these molecules are able to change the position of the defect levels within the band gap and modulate the carrier density around the defect center. Charge transfer analysis shows that TCNE and TCNQ induce a free-carrier depletion of the defect states, which is beneficial for the suppression of the nonradiative trionic decay and a higher excitonic efficiency due to a decrease in the screening of excitons. Furthermore, the effects of molecular adsorption on Seebeck coefficient of MoS2 are also explored. Our work suggests that an enhanced excitonic efficiency of MoS2 may be achieved via proper defect engineering and molecular doping arising from the charge density modulation and charge screening.
By way of the non-equilibrium Green's function simulations and first-principles calculations, we report that borophene, a single layer of boron atoms that was fabricated recently, possesses an extraordinarily high lattice thermal conductance in the ballistic transport regime, which even exceeds graphene. In addition to the obvious reasons of light mass and strong bonding of boron atoms, the superior thermal conductance is mainly rooted in its strong structural anisotropy and unusual phonon transmission. For low-frequency phonons, the phonon transmission within borophene is nearly isotropic, similar to that of graphene. For highfrequency phonons, however, the transmission is one-dimensional, that is, all the phonons travel in one direction, giving rise to its ultra-high thermal conductance. The present study suggests that borophene is promising for applications in efficient heat dissipation and thermal management, and also an ideal material for revealing fundamentals of dimensionality effect on phonon transport in ballistic regime.
Thermoelectric efficiency is defined as the ratio of power delivered to the load of a device to the rate of heat flow from the source. Till date, it has been studied in presence of thermodynamic constraints set by the Onsager reciprocal relation and the second law of thermodynamics that severely bottleneck the thermoelectric efficiency. In this study, we propose a pathway to bypass these constraints using a time-dependent control and present a theoretical framework to study dynamic thermoelectric transport in the far from equilibrium regime. The presence of a control yields the sought after substantial efficiency enhancement and importantly a significant amount of power supplied by the control is utilised to convert the wasted-heat energy into useful-electric energy. Our findings are robust against nonlinear interactions and suggest that external time-dependent forcing, which can be incorporated with existing devices, provides a beneficial scheme to boost thermoelectric efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.