Three porous organic polymers (POPs) containing H, COOMe, and COO(-) groups at 2,6-bis(1,2,3-triazol-4-yl)pyridyl (BTP) units (i.e., POP-1, POP-2, and POP-3, respectively) were prepared for the immobilization of metal nanoparticles (NPs). The ultrafine palladium NPs are uniformly encapsulated in the interior pores of POP-1, whereas uniform- and dual-distributed palladium NPs are located on the external surface of POP-2 and POP-3, respectively. The presence of carboxylate groups not only endows POP-3 an outstanding dispersibility in H2 O/EtOH, but also enables the palladium NPs at the surface to show the highest catalytic activity, stability, and recyclability in dehalogenation reactions of chlorobenzene at 25 °C. The palladium NPs on the external surface are effectively stabilized by the functionalized POPs containing BTP units and carboxylate groups, which provides a new insight for highly efficient catalytic systems based on surface metal NPs of porous materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.