Increased expression and activity of cardiac and circulating cathepsin D and soluble fms‐like tyrosine kinase‐1 (sFlt‐1) have been demonstrated to induce and promote peripartum cardiomyopathy (PPCM) via promoting cleavage of 23‐kD prolactin (PRL) to 16‐kD PRL and neutralizing vascular endothelial growth factor (VEGF), respectively. We hypothesized that activation of Hes1 is proposed to suppress cathepsin D via activating Stat3, leading to alleviated development of PPCM. In the present study, we aimed to investigate the role of Notch1/Hes1 pathway in PPCM. Pregnant mice between prenatal 3 days and postpartum 3 weeks were fed with LY‐411575 (a notch inhibitor, 10 mg/kg/d). Ventricular function and pathology were evaluated by echocardiography and histological analysis. Western blotting analysis was used to examine the expression at the protein level. The results found that inhibition of Notch1 significantly promoted postpartum ventricular dilatation, myocardial hypertrophy and myocardial interstitial fibrosis and suppressed myocardial angiogenesis. Western blotting analysis showed that inhibition of Notch1 markedly increased cathepsin D and sFlt‐1, reduced Hes1, phosphorylated Stat3 (p‐Stat3), VEGFA and PDGFB, and promoted cleavage of 23k‐D PRL to 16‐kD PRL. Collectively, inhibition of Notch1/Hes1 pathway induced and promoted PPCM via increasing the expressions of cathepsin D and sFlt‐1. Notch1/Hes1 was a promising target for prevention and therapeutic regimen of PPCM.
Despite N6-methyladenosine (m6A) is functionally important in various biological processes, its role in the underlying regulatory mechanism in TNBC are lacking. In this study, we investigate the pathological role and the underlying mechanism of the m6A methylated RNA level and its major methyltransferase METTL3 in the TNBC progression. We found that the m6A methylated RNA was dramatically decreased in TNBC tissues and cell lines. Functionally, we demonstrated that METTL3 inhibits the proliferation, migration, and invasion ability of TNBC cells. Moreover, we found METTL3 is repressed by miR-34c-3p in TNBC cells. On the mechanism, we found that circMETTL3 could act as a sponge for miR-34c-3p and inhibits cell proliferation, invasion, tumor growth and metastasis by up-regulating the expression of miR-34c-3p target gene METTL3. In conclusion, our study demonstrates the functional importance and regulatory mechanism of METTL3 in suppressing the tumor growth of TNBC.
Apatinib is a tyrosine kinase inhibitor and vascular endothelial growth factor receptor 2 (VEGFR-2) targeted drug. A phase I clinical trial showed that this agent has antitumor activity in Chinese patients with metastatic gastric cancer (mGC). The aim of this study was to investigate the safety and efficacy of apatinib treatment in patients with mGC.This was an open-label, multicenter, single-arm study involving four institutions in China. We enrolled 42 patients from March 2015 to October 2015 who experienced tumor progression after second-line chemotherapy and had no other treatment options that clearly conferred a survival benefit. Oral apatinib (850 mg daily) was administered within 30 min of eating breakfast, lunch, or dinner on days 1 through 28 of each 4-week cycle.The median progression-free survival (PFS) time and median overall survival (OS) time were 4.0 months (95% CI, 2.85-5.15) and 4.50 months (95% CI, 4.03-4.97), respectively. The disease control rate (DCR) and objective response rate (ORR) were, respectively, 78.57% and 9.52% after 2 cycles and 57.14% and 19.05% after 4 cycles. The main adverse events (AEs) were secondary hypertension, elevated aminotransferase, and hand-foot syndrome, with incidences of 35.71%, 45.24%, and 40.48%, respectively. The most common grade 3 to 4 AEs were secondary hypertension and elevated aminotransferase, with incidences of 7.14% each.Apatinib is effective and safe in heavily pretreated patients with mGC who fail to respond to two or more prior chemotherapy regimens. Toxicities were tolerable or could be clinically managed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.