In this paper, we propose a novel method for video anomaly detection motivated by an existing architecture for sequence-to-sequence prediction and reconstruction using a spatio-temporal convolutional Long Short-Term Memory (convL-STM). As in previous work on anomaly detection, anomalies arise as spatially localised failures in reconstruction or prediction. In experiments with five benchmark datasets, we show that using prediction gives superior performance to using reconstruction. We also compare performance with different length input/output sequences. Overall, our results using prediction are comparable with the state of the art on the benchmark datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.