The coordination behavior of [[CpMo(CO)(2)}(2)(mu,eta(2)-Sb(2))] (1; Cp = cyclopentadiene) toward Cu(I) was investigated. Its reaction with CuX (X = Br, Cl, and I) produced oligomers or polymers of the general formula [[CpMo(CO)(2)](2)(mu,eta(2)-Sb(2))(mu-CuX)](n). While 2 (X = Cl, n = 2) and 3 (X = Br, n = 2) proved to be halogen-bridged dimers in both solution and solid state, the molecules of 4 (X = I, n = infinity) self-assembled in the crystal forming a linear polymer with a Cu-I skeleton supported by Sb-Cu bonds. The reaction of 1 with Cu[GaCl(4)] resulted in the formation of the ionic complex [[CpMo(CO)(2)](2)(mu,eta(2)-Sb(2))](4)Cu(2)[GaCl(4)](2) (5). Its dication contains four [[CpMo(CO)(2)](2)(mu,eta(2)-Sb(2))] ligands arranged around a Cu-Cu dumbbell. All new compounds were characterized using IR, electrospray ionization mass spectrometry, (1)H NMR, elemental analysis, and single-crystal X-ray diffraction. The ligand was oxidized by both silver(I) and copper(II), and a cyclovoltammetric study revealed that 1 suffered irreversible reduction and oxidation in a dichloromethane solution at -2.04 and 0.10 V, respectively, versus ferrocene.
A heterocyclic cyclopentadienyl analog containing only one carbon atom in the ring was prepared and a polymeric lithiocene and a monomeric zincocene containing this novel ligand have been isolated and crystallographically characterized.
The ring closure of 1,2-diisopropylhydrazine and 1,1-bis(phenylchloroboryl)ethane produced a heterocyclic compound with a CB 2 N 2 framework. Deprotonation of this precursor yielded 1,2-diisopropyl-4-methyl-3,5-diphenyl-1,2-diaza-3,5-diborolyl, a cyclopentadienyl analogue containing only one carbon atom in the ring skeleton. Lithium, sodium, and potassium salts of the new ligand have been prepared and characterized. The structures of both monomeric and polymeric sodium metallocenes, as well as the structures of polymeric potassium metallocenes incorporating the new heterocycle, have been determined by single-crystal X-ray diffractometry. These structures reveal not only many similarities but also significant differences in the coordination behavior of the new ligand compared with that of the carbon-based analogue.
Lithium (2a), sodium (2b), and potassium (2c) salts of 1-methyl-3,5-diphenyl-4-methylamino-1,2,4-triaza-3,5-diborolyl were prepared by deprotonation of the ring nitrogen in neutral precursor 1. The alkali metal derivatives were characterized by multinuclear NMR, mass spectrometry, and single-crystal X-ray diffraction. The structural determinations revealed extended 2D structures for 2a and 2b and an extended 1D structure for 2c. All three solvent-free structures are dominated by sigma interactions, and pi interactions are also present for the potassium derivative. Addition of triphenylborane to 2a, 2b, and 2c produced the adducts 3a, 3b, and 3c, respectively, and these were characterized by multinuclear NMR and mass spectrometry. Structural determinations have been performed for the lithium and potassium salt, showing that Ph3B coordinates at the 2 position of the ring, whereas the alkali metal is coordinated by the pendant methylamino group. The lithium ion is additionally coordinated by three acetonitrile molecules in the monomeric structure of 3a, whereas the potassium ion is coordinated by three phenyl groups, forming the 1D polymeric structure of 3c. Reaction of 2a with [Rh(cod)Cl]2 yielded the dimeric 4, containing two 1,2,4-triaza-3,5-diborolyl rings bridging two Rh(cod) fragments through the substituent-free ring nitrogen atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.