Background Hyperlipidaemia is an important factor that induces coronary artery disease (CAD). This study aimed to explore the lipid metabolism patterns and relevant clinical and molecular features of coronary artery disease patients. Methods In the current study, datasets were fetched from the Gene Expression Omnibus (GEO) database and nonnegative matrix factorization clustering was used to establish a new CAD classification based on the gene expression profile of lipid metabolism genes. In addition, this study carried out bioinformatics analysis to explore intrinsic biological and clinical characteristics of the subgroups. Results Data for a total of 615 samples were extracted from the Gene Expression Omnibus database and were associated with clinical information. Then, this study used nonnegative matrix factorization clustering for RNA sequencing data of 581 lipid metabolism relevant genes, and the 296 patients with CAD were classified into three subgroups (NMF1, NMF2, and NMF3). Subjects in subgroup NMF2 tended to have an increased severity of CAD. The CAD index and age of group NMF1 were similar to those of group NMF3, but their intrinsic biological characteristics exhibited significant differences. In addition, weighted gene coexpression network analysis (WGCNA) was used to determine the most important modules and screen lipid metabolism related genes, followed by further analysis of the DEGs in which the significant genes were identified based on clinical information. The progression of coronary atherosclerosis may be influenced by genes such as PTGDS and DGKE. Conclusion Different CAD subgroups have their own intrinsic biological characteristics, indicating that more personalized treatment should be provided to patients in each subgroup, and some lipid metabolism related genes (PDGTS, DGKE and so on) were related significantly with clinical characteristics.
Background Data on the relationship of baseline serum uric acid (SUA) with development of low-density lipoprotein cholesterol (LDL-C) level in patients with first acute myocardial infarction (AMI) are limited. The present study is to evaluate whether elevated SUA predicts the development of LDL-C in the first AMI. Methods This is a retrospective 6-month cohort study of 475 hospitalized Chinese patients who underwent first AMI between January 2015 and December 2019 and were reevaluated half a year later at the Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Jiangxi Province, China. The associations of baseline SUA with the percentage decrease of LDL-C (%) and LDL-C control were analyzed by using logistic regression analyses, multivariate linear regression analyses and the restricted cubic spline. Results Over the 6-month follow-up, baseline SUA was independently and positively associated with the percentage decrease of LDL-C (%) and LDL-C control in a dose response fashion. After multivariable adjustment, per SD increment of baseline SUA (120.58 μmol/L) was associated with 3.96% higher percentage decrease of LDL-C(%). The adjusted OR (95% CI) for LDL-C control was 5.62 (2.05, 15.36) when comparing the highest tertile (SUA ≥ 437.0 μmol/L) to the lowest tertile (< 341.7 μmol/L) of baseline SUA. Conclusions Among Chinese patients with first AMI, higher baseline SUA was associated with higher LDL-C deduction percentage (%), and higher rate of LDL-C control in the short-term follow-up, respectively. SUA acquired when AMI occurred was prone to be profitable in predicting the risk stratification of uncontrolled LDL-C and dyslipidemia management.
BackgroundReported evidence of coronary stent fracture (CSF) has increased in recent years. The purpose of this study was to determine reliable estimates of the overall incidence of CSF.Methods and resultsThe MEDLINE, Embase and Cochrane databases were searched until March 18, 2022. Pooled estimates were acquired using random effects models. Meta-regression and subgroup analysis were used to explore sources of heterogeneity, and publication bias was evaluated by visual assessment of funnel plots and Egger’s test. Overall, 46 articles were included in this study. Estimates of CSF incidence were 5.5% [95% confidence interval (CI): 3.7–7.7%] among 39,953 patients based on 36 studies, 4.8% (95% CI: 3.1–6.8%) among 39,945 lesions based on 29 studies and 4.9% (95% CI: 2.5–9.4%) among 19,252 stents based on 8 studies. There has been an obvious increase in the incidence of CSF over the past two decades, and it seems that the duration of stent placement after stent implantation has no impact on incidence estimation.ConclusionThe incidence of CSF was 5.5% among patients, 4.8% for lesions and 4.9% for stents and increased over the past 20 years. The duration of stent placement after stent implantation was found to have no impact on the incidence of CSF, but drug-eluting stent (DES) types and right coronary artery (RCA) lesions influenced the pooled incidence.Systematic review registration[https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022311995], identifier [CRD42022311995].
Objective In patients undergoing percutaneous coronary intervention (PCI) with rotational atherectomy (RA), the relationship between blood urea nitrogen (BUN) and the post-discharge major adverse cardiovascular events (MACE) is unknown. The aim of this study was to explore whether there exists an association between admission BUN and prognosis in patients undergoing PCI with RA. Methods A total of 94 consecutive patients who underwent PCI with RA were included in this retrospective study. Based on admission BUN, the patients were divided into two categories: high (> 7.7 mmol/l) and low (≤ 7.7 mmol/l) BUN groups. The patients were followed-up for adverse clinical outcomes after discharge and the median follow-up time was 1.4 years (interquartile range [IQR] 0.8–3.0). Results Patients in the high BUN group showed older age, worse NYHA classification, worse renal function (creatinine, eGFR, uric acid) and higher homocysteine levels than those in the low BUN group. During the period of follow-up, patients in the high BUN group had higher rates of MACE (71.43% vs. 37.88%; p = 0.003) and readmission for cardiovascular diseases (64.29% vs. 31.82%; p = 0.003) than patients in the low BUN group. This difference persisted after the Cox multivariate regression analysis. Conclusion Elevated BUN on admission is an independent marker of MACE among patients undergoing PCI with RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.