Quinoa (Chenopodium quinoa) is classified as one of the pseudo-cereal grains rich in both macronutrients and micronutrients. This study tracks changes in the polyphenol composition of red quinoa (RQ) and yellow quinoa (YQ) seeds during germination. The antioxidant bioactivity of raw and germinated seed was also determined in vitro. Phenolic acids and their derivatives and flavonoids were identified by using HPLC-DAD and quantified after 0, 3, and 6 days of germination. Subsequently, the extracts of 6-day-old quinoa sprouts were prepared to biologically evaluate their functional properties against CCl4-induced oxidative stress in rats. The results indicated that antioxidant activity (AOA) of total phenolic compounds (TPC), and flavonoids significantly increased in RQ and YQ sprouts during germination up to 9 days. RQ sprouts exhibited stronger bioactive compound diversity than YQ sprouts as observed in HPLC analysis. Among the 11 and 8 quantified polyphenols, ferulic acid and quercetin were predominant phenolic acid and flavonoid in RQ and YQ sprouts, respectively. After 6 days of germination, 16 and 8 polyphenols were detected and quantified in RQ and YQ sprouts, respectively. Interestingly, the treatment of rats at a dose of 30 mg of Gallic acid Equivalent (GAE) kg−1 significantly reduced fasting blood glucose (FBG), alanine aminotransferase (ALT), aspartate aminotransferase AST, and total bilirubin (TIBIL) and improved liver inflammation. Furthermore, RQ and YQ sprouts improved the blood profile by significantly decreasing low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL) and increasing high-density lipoproteins (HDL). Moreover, RQ and YQ sprout extracts significantly reduced malonaldehyde (MDA) and efficiently enhanced the reduced glutathione (GSH) and superoxide dismutase (SOD) activities in oxidative stress-induced rats as compared to CCl4-rats. In conclusion, red quinoa sprouts (RQS) and yellow quinoa sprouts (YQS) provide naturally synthesized polyphenols, possessing superior antioxidant activity, and their ethanolic extracts have promising effects and potential health benefits to counter induced oxidative stress. Incorporating quinoa sprouts as functional food ingredients should be considered and scaling-up its production is beneficial.
Snack bars, known as energy bars, are widely consumed worldwide as highly nutritive on-the-go products. Due to the date fruit’s significant nutritional and functional characteristics, it can be an exceptional choice for developing snack bars. Dates contain a wide range of macro- and micronutrients known for their strong bioactive properties. The functional properties of date fruit have been demonstrated in the literature and include antioxidant, anti-inflammatory, anti-tumor, antihypertensive, and antimicrobial activities. This review summarizes the available studies investigating the potential application of dates for developing nutritive and functional snack bars. Date paste was used as a main ingredient at 55–90% concentrations. In addition, protein sources were used to provide protein-rich snack bars, as date fruit is considered high in carbohydrates and low in protein. Skim milk powder was the most common and favorable protein source, delivering significant amounts of protein with limited negative effects on sensory attributes. Incorporating other ingredients, such as cereals or legumes, was also explored; adding such dry ingredients can promote positive nutritional effects along with improving sensory attributes, mainly in terms of the bars’ textures. Dry ingredients can significantly lower moisture content, reducing the bars’ fracturability to acceptable ranges. Reduced moisture content can also significantly enhance the shelf-life stability, as observed by limited microbial growth. Furthermore, the incorporation of bioactive or functional ingredients such as fruit peels, plant seeds, or plant leaf extracts was also reported; such ingredients promoted significant enhancements in the contents of phenolics or flavonoids, for instance, leading to an increase in the bars’ antioxidant potential. Though dates are rich in such bioactive components, incorporating additional bioactive ingredients can boost the dates’ functional properties. In conclusion, this review shows the high potential of the application of dates for developing nutritious and functional snack bars. Taking this into account, the snack bar market has grown remarkably over the past decade; thus, providing well-balanced, nutritious, and functional date-based bars in markets worldwide is expected to show positive consumer acceptance.
Oxidative stress is linked with inflammation, diabetic complications, and advanced glycation end products formation. Intake of flavonoid-rich foods has been reported to have a beneficial effect on human health. The aim of this study was to verify the therapeutic potential of Phyllanthusemblica and Azadiractha indica against glycation and other oxidative stress-induced complications such as inflammation using in vitro study. Ethanol extracts of Phyllanthus emblica fruit pulp and dried leaf of Azadiractha indica were prepared to investigate in vitro anti-inflammatory and anti-glycating potentials. In a DPPH assay, the EC50 value of extract of P. emblica and A. indica was found to be 1532.36 ± 0.17 and 1380.61 ± 0.27 µg/mL, respectively. The FRAP value of P. emblica and A. indica extract was 86.6 and 32.12 µg ascorbic acid/100 mg dry weight of the extract. The maximum percentage of H2O2 scavenging activity was 71.30% and 67.38%, respectively. Extracts of P. emblica and A. indica showed maximum inhibition of heat-induced BSA denaturation by 62.42% and 53.00%, heat-induced denaturation of egg albumin, by 50.84%% and 44.31%, and heat-induced hemolysis by 54.44% and 50.21%. Both extracts (600 µg/mL) significantly reduced the browning, structural changes, aggregation, and AGEs formation. Our biophysical studies confirmed the AGEs formation was inhibiting the potential of extracts. Thus, our findings confirm that these extracts are a rich source of antioxidants and may be utilized to prevent the oxidative stress-induced destruction of biomolecules, glycation, and in the therapy of a variety of health problems, including inflammation. Further, a combination of extracts of P. emblica and A. indica may be extremely useful in preventing and treating health problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.