Apache Spark jobs are often characterized by processing huge data sets and, therefore, require runtimes in the range of minutes to hours. Thus, being able to predict the runtime of such jobs would be useful not only to know when the job will finish, but also for scheduling purposes, to estimate monetary costs for cloud deployment, or to determine an appropriate cluster configuration, such as the number of nodes. However, predicting Spark job runtimes is much more challenging than for standard database queries: cluster configuration and parameters have a significant performance impact and jobs usually contain a lot of user-defined code making it difficult to estimate cardinalities and execution costs. In this paper, we present a gray-box modeling methodology for runtime prediction of Apache Spark jobs. Our approach comprises two steps: first, a white-box model for predicting the cardinalities of the input RDDs of each operator is built based on prior knowledge about the behavior and application parameters such as applied filters data, number of iterations, etc. In the second step, a black-box model for each task constructed by monitoring runtime metrics while varying allocated resources and input RDD cardinalities is used. We further show how to use this gray-box approach not only for predicting the runtime of a given job, but also as part of a decision model for reusing intermediate cached results of Spark jobs. Our methodology is validated with experimental evaluation showing a highly accurate prediction of the actual job runtime and a performance improvement if intermediate results can be reused.
Distributed in-memory data processing engines accelerate iterative applications by caching substantial datasets in memory rather than recomputing them in each iteration. Selecting a suitable cluster size for caching these datasets plays an essential role in achieving optimal performance. In practice, this is a tedious and hard task for end users, who are typically not aware of cluster specifications, workload semantics and sizes of intermediate data.We present Blink, an autonomous sampling-based framework, which predicts sizes of cached datasets and selects optimal cluster size without relying on historical runs. We evaluate Blink on a variety of iterative, real-world, machine learning applications. With an average sample runs cost of 4.6 % compared to the cost of optimal runs, Blink selects the optimal cluster size in 15 out of 16 cases, saving up to 47.4 % of execution cost compared to average costs.
Apache Spark jobs are often characterized by processing huge data sets and, therefore, require runtimes in the range of minutes to hours. Thus, being able to predict the runtime of such jobs would be useful not only to know when the job will finish, but also for scheduling purposes, to estimate monetary costs for cloud deployment, or to determine an appropriate cluster configuration, such as the number of nodes. However, predicting Spark job runtimes is much more challenging than for standard database queries: cluster configuration and parameters have a significant performance impact and jobs usually contain a lot of user-defined code making it difficult to estimate cardinalities and execution costs. In this paper, we present a gray-box modeling methodology for runtime prediction of Apache Spark jobs. Our approach comprises two steps: first, a white-box model for predicting the cardinalities of the input RDDs of each operator is built based on prior knowledge about the behavior and application parameters such as applied filters data, number of iterations, etc. In the second step, a black-box model for each task constructed by monitoring runtime metrics while varying allocated resources and input RDD cardinalities is used. We further show how to use this gray-box approach not only for predicting the runtime of a given job, but also as part of a decision model for reusing intermediate cached results of Spark jobs. Our methodology is validated with experimental evaluation showing a highly accurate prediction of the actual job runtime and a performance improvement if intermediate results can be reused.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.