SummaryCMOS technology faces fundamental challenges such as frequency and power consumption due to the impossibility of further reducing dimensions. For these reasons, researchers have been thinking replacement of this technology with other technologies such as quantum‐dot cellular automata (QCA) technology. Many studies have been done to design digital circuits using QCA technology. Phase‐frequency detector (PFD) is one of the main blocks in electrical and communication circuits. In this paper, a novel structure for PFDs in QCA technology is proposed. In the proposed design, the novel D flip‐flop (D‐FF) with reset ability is used. The D‐FF is designed by the proposed D latch which is based on nand‐nor‐inverter (NNI) and an inverter gate. This proposed D latch has 22 cells and 0.5 clock cycle latency and 0.018‐μm2 area. The inverter gate of the D‐FF has output signal with high polarization level and lower area than previous inverters, and the NNI gate of the D‐FF is a universal gate. The proposed PFD has 141 cells, 0.17‐μm2 occupied area, and two clock cycle latency that is smaller compared with PFD and is based on common inverter and majority gates.
The process of reducing dimensions in CMOS technology and also making digital devices more portable, faces serious challenges such as increasing frequency and reducing power consumption. For this reason, scientists are looking for a solution such as replacing CMOS technology with other technologies including Quantum-dot Cellular Automata (QCA) technology and many researches have designed digital circuits by using QCA technology. Flip-flops are one of the main blocks in most digital circuits. In this paper, a D-type flip-flop (D-FF) is presented in QCA technology that a majority gate has been used in its feedback path to reset. The D-FF is designed by the proposed D Latch which is based on Nand-Nor-Inverter (NNI) and a new inverter gate that the proposed D latch has 24 cells and 0.5 clock cycle latency and 0.02 μm 2 area. The new inverter gate of the D-FF has output signal with high polarization level and lower area than previous inverters and the NNI gate of the D-FF is a universal gate. One of the applications of D-FFs with reset pin is the use in Phase-frequency detector (PFD). In the proposed scheme, a reset feature has been added to D-FF since the PFD structure can be designed. All of the proposed schemes are evaluated by the QCADesigner software and energy consumption simulations are estimated using QCAPro software for all proposed circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.