Carefully designed micro-and nanocarriers can provide significant advantages over conventional macroscopic counterparts in biomedical applications. The set of requirements including a high loading capacity, triggered release mechanisms, biocompatibility, and biodegradability should be considered for the successful delivery realization. Porous calcium carbonate (CaCO3) is one of the most promising platforms, which can encompass all the beforehand mentioned requirements. Here, we study both the particles formation and biological applicability of CaCO3. In particular, anisotropic differently shaped CaCO3 particles were synthesized using green sustainable approach based on co-precipitation of calcium chloride and sodium carbonate/bicarbonate at different ratios in the presence of organic additives. The impact of salts concentrations, reaction time, as well as organic additives was systematically researched to achieve controllable and reliable design of CaCO3 particles. It has been demonstrated that the crystallinity (vaterite or calcite phase) of particles depends on the initial salts' concentrations. The loading capacity of prepared CaCO3 particles is determined by their surface properties such as specific surface area, pore size and zetapotential. Differently shaped CaCO3 particles (spheroids, ellipsoids, toroids) were used to evaluate their uptake efficiency on the example of C6 glioma cells. The results show that the ellipsoidal particles possess a higher probability for internalization by cancer cells. All tested particles were also found to have a good biocompatibility. The capability to design physicochemical properties of CaCO3 particles has a significant impact on drug delivery applications, since the particles geometry substantially affects cell behavior (internalization, toxicity) and allows outperforming standard spherical counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.