mostly based on fluorescent (FL) agents of high brightness and combines exceptional optical properties with biocompatibility, biodegradability, and precise targeting both in vivo and in vitro. This includes inorganic semiconductor quantum dots, [2] carbon nanodots, [3] organic molecular dyes, [4] and genetically encoded universal FL proteins. [5] Additional specific class of extrinsic FL nanoprobes is amyloidbinding small molecule ligands (thioflavin T, Congo red and more) employed for tracking the kinetics of amyloid fibrils growth. [6] Each of the imaging agents has its inherent mechanism of photon emission, which defines its figures of merit for bioimaging: FL spectral region, quantum yield (QY), and photobleaching. [7,8] For instance, quantum dots and organic dye molecules exhibit FL in the visible range and have very high QY exceeding 90%. However, the organic molecular dyes are limited for long-term bioimaging applications because of photobleaching issues. The biocompatibility is another basic parameter of any biolabels, which is especially critical for some organic dyes and inorganic semiconductor quantum dots, containing heavy metals. Recently found FL carbon nanodots are biocompatible but have a low QY. [9] The green fluorescence protein (GFP) and its homologues are the only molecules, known until today, having biological origin FL and providing unique biocompatibility. These proteins exhibit pronounced FL with QY reaching 90% covering the entire visible spectrum, which makes them unique FL tags [10] among unlimited number of nonfluorescent peptide and protein biomolecules. [1,2,5,7] Alternative composition-insensitive visible FL was recently found in biological and bioinspired nanostructures characterized by specific ordering of biomolecules into antiparallel β-sheets structures. This includes a wide variety of diverse biomolecular compositions, such as amyloidogenic proteins, [11,12] PEGylated peptides, [13,14] nonaromatic biogenic, and synthetic peptides [15] and recently natural silk fibrils. [16] The basic features of these FL nanostructures are similar fibrillar morphology, original β-sheets secondary structure, and identical visible FL optical spectrum. These common structural and optical properties enable to relate all of them to a wide class of thermodynamically stable disease-and nondiseased-related amyloid structures. [17][18][19] Such β-sheet structures and visible FL can also Nanoscale bioimaging is a highly important scientific and technological tool, where fluorescent (FL) proteins, organic molecular dyes, inorganic quantum dots, and lately carbon dots are widely used as light emitting biolabels. In this work, a new class of visible FL bioorganic nanodots, self-assembled from short peptides of different composition and origin, is introduced. It is shown that the electronic energy spectrum of native nonfluorescent peptide nanodots (PNDs) is deeply modified upon thermally mediated refolding of their biological secondary structure from native metastable to stable β-sheet rich structure. This ...
Being the polymorphs of calcium carbonate (CaCO3), vaterite and calcite have attracted a great deal of attention as promising biomaterials for drug delivery and tissue engineering applications. Furthermore, they are important biogenic minerals, enabling living organisms to reach specific functions. In nature, vaterite and calcite monocrystals typically form self-assembled polycrystal micro- and nanoparticles, also referred to as spherulites. Here, we demonstrate that alpine plants belonging to the Saxifraga genus can tailor light scattering channels and utilize multipole interference effect to improve light collection efficiency via producing CaCO3 polycrystal nanoparticles on the margins of their leaves. To provide a clear physical background behind this concept, we study optical properties of artificially synthesized vaterite nanospherulites and reveal the phenomenon of directional light scattering. Dark-field spectroscopy measurements are supported by a comprehensive numerical analysis, accounting for the complex microstructure of particles. We demonstrate the appearance of generalized Kerker condition, where several higher order multipoles interfere constructively in the forward direction, governing the interaction phenomenon. As a result, highly directive forward light scattering from vaterite nanospherulites is observed in the entire visible range. Furthermore, ex vivo studies of microstructure and optical properties of leaves for the alpine plants Saxifraga “Southside Seedling” and Saxifraga Paniculata Ria are performed and underline the importance of the Kerker effect for these living organisms. Our results pave the way for a bioinspired strategy of efficient light collection by self-assembled polycrystal CaCO3 nanoparticles via tailoring light propagation directly to the photosynthetic tissue with minimal losses to undesired scattering channels.
Nanoscale optical labeling is an advanced bioimaging tool. It is mostly based on fluorescence (FL) phenomena and enables the visualization of single biocells, bacteria, viruses, and biological tissues, providing monitoring of functional biosystems in vitro and in vivo, and the imaging-guided transportation of drug molecules. There is a variety of FL biolabels such as organic molecular dyes, genetically encoded fluorescent proteins (green fluorescent protein and homologs), semiconductor quantum dots, carbon dots, plasmonic metal gold-based nanostructures and more. In this review, a new generation of FL biolabels based on the recently found biophotonic effects of visible FL are described. This intrinsic FL phenomenon is observed in any peptide/protein materials folded into β-sheet secondary structures, irrespective of their composition, complexity, and origin. The FL effect has been observed both in natural amyloid fibrils, associated with neurodegenerative diseases (Alzheimer’s, Parkinson’s, and more), and diverse synthetic peptide/protein structures subjected to thermally induced biological refolding helix-like→β-sheet. This approach allowed us to develop a new generation of FL peptide/protein bionanodots radiating multicolor, tunable, visible FL, covering the entire visible spectrum in the range of 400–700 nm. Newly developed biocompatible nanoscale biomarkers are considered as a promising tool for emerging precise biomedicine and advanced medical nanotechnologies (high-resolution bioimaging, light diagnostics, therapy, optogenetics, and health monitoring).
The efficient optoelectronic properties of photosynthetic proteins were explored in the quest for the fabrication of novel solid biohybrid devices. As most optoelectronic devices function in a dry environment, an attempt was made to fabricate an efficient electronic junction by covalent binding of photosynthetic reaction center proteins to metals, transparent semiconductor polymers, and solid semiconductors that function in a dry environment. The primary stages of photosynthesis take place in nanometric-size protein–chlorophyll complexes. Such is photosystem I (PSI), which generates a photovoltage of 1 V. The isolated PSI generates an absorbed light-energy conversion efficiency of ∼47% (∼23% solar energy) and internal quantum efficiency of ∼100%. The robust cyanobacterial PSI was used in the fabrication of solid-state optoelectronic devices by forming oriented multilayers from genetically engineered cysteine mutants between metal and transparent conducting semiconductor electrodes. Current–voltage measurements of the cells generated diode- and photodiode-like responses in the dark and the light, respectively. The cells were stable for many months in a dry environment. The generation of photocurrent and V oc indicated the formation of good electronic coupling between PSI and the electrodes, which can serve in the fabrication of solid-state biohybrid optoelectronic devices.
Optical properties of nanoparticles attract continuous attention owing to their high fundamental and applied importance across many disciplines. Recently emerged field of all-dielectric nanophotonics employs optically induced electric and magnetic Mie resonances in dielectric nanoparticles with a high refractive index. This property allows obtaining additional valuable degrees of freedom to control optical responses of nanophotonic structures. Here we propose a conceptually distinct approach towards reaching optical resonances in dielectric nanoparticles. We show that lacking conventional Mie resonances, low-index nanoparticles can exhibit a novel anisotropy-induced family of non-Mie eigenmodes. Specifically, we investigate light interactions with calcite and vaterite nanospheres and compare them with the Mie scattering by a fused silica sphere. Having close permittivities and same dimensions, these particles exhibit significantly different scattering behavior owing to their internal structure. While a fused silica sphere does not demonstrate any spectral features, the uniaxial structure of the permittivity tensor for calcite and non-diagonal permittivity tensor for vaterite result in a set of distinguishable peaks in scattering spectra. Multipole decomposition and eigenmode analysis reveal that these peaks are associated with a new family of electric and magnetic resonances. We identify magnetic dipole modes of ordinary, extraordinary and hybrid polarization as well as complex electric dipole resonances, featuring a significant toroidal electric dipole moment. As both vaterite and calcite are biominerals, naturally synthesized and exploited by a variety of living organisms, our results provide an indispensable toolbox for understanding and elucidation of mechanisms behind optical functionalities of true biological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.