Global Navigation Satellite Systems (GNSS) deliver absolute position and velocity, as well as time information (P, V, T). However, in urban areas, the GNSS navigation performance is restricted due to signal obstructions and multipath. This is especially true for applications dealing with highly automatic or even autonomous driving. Subsequently, multi-sensor platforms including laser scanners and cameras, as well as map data are used to enhance the navigation performance, namely in accuracy, integrity, continuity and availability. Although well-established procedures for integrity monitoring exist for aircraft navigation, for sensors and fusion algorithms used in automotive navigation, these concepts are still lacking. The research training group i.c.sens, integrity and collaboration in dynamic sensor networks, aims to fill this gap and to contribute to relevant topics. This includes the definition of alternative integrity concepts for space and time based on set theory and interval mathematics, establishing new types of maps that report on the trustworthiness of the represented information, as well as taking advantage of collaboration by improved filters incorporating person and object tracking. In this paper, we describe our approach and summarize the preliminary results.
Reliable confidence domains for positioning with Global Navigation Satellite System (GNSS) and inconsistency measures for the observations are of great importance for any navigation system, especially for safety critical applications. In this work, deterministic error bounds are introduced in form of intervals to assess remaining observation errors. The intervals can be determined based on expert knowledge or -as in our case -based on a sensitivity analysis of the measurement correction process. Using convex optimization, bounding zones are computed for GPS positioning, which satisfy the geometrical constraints imposed by the observation intervals. The bounding zone is a convex polytope. When exploiting only the navigation geometry, a confidence domain is computed in form of a zonotope. We show that the relative volume between the polytope and the zonotope can be considered as an inconsistency measure. A small polytope volume indicates bad consistency of the observations. In extreme cases, empty sets are obtained which indicates large outliers. We explain how shape and volume of the polytopes are related to the positioning geometry. Furthermore, we propose a new concept of Minimum Detectable Biases.Using the example of the Klobuchar ionospheric model and Saastamoinen tropospheric model, we show how observation intervals can be determined via sensitivity analysis of these correction models for a real measurement campaign. Taking GPS code data from simulations and real experiments, a comparison analysis between the proposed deterministic bounding method and the classical least-squares adjustment has been conducted in terms of accuracy and reliability. It shows that the computed polytopes always enclose the reference trajectory. In case of large outliers, large position deviations persist in the least-squares solution while the polytope algorithm yields empty sets and thus successfully detects the cases with outliers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.