Water resources are vital to the survival of living organisms and contribute substantially to the development of various sectors. Climatic diversity, topographic conditions, and uneven distribution of surface water flows have made reservoirs one of the primary water supply resources in Iran. This study used Landsat 5, 7, and 8 data in Google Earth Engine (GEE) for supervised monitoring of surface water dynamics in the reservoir of eight Iranian dams (Karkheh, Karun-1, Karun-3, Karun-4, Dez, UpperGotvand, Zayanderud, and Golpayegan). A novel automated method was proposed for providing training samples based on an iterative K-means refinement procedure. The proposed method used the Function of the Mask (Fmask) initial water map to generate final training samples. Then, Support Vector Machines (SVM) and Random Forest (RF) models were trained with the generated samples and used for water mapping. Results demonstrated the satisfactory performance of the trained RF model with the samples of the proposed refinement procedure (with overall accuracies of 95.13%) in comparison to the trained RF with direct samples of Fmask initial water map (with overall accuracies of 78.91%), indicating the proposed approach’s success in producing training samples. The performance of three feature sets was also evaluated. Tasseled-Cap (TC) achieved higher overall accuracies than Spectral Indices (SI) and Principal Component Transformation of Image Bands (PCA). However, simultaneous use of all features (TC, SI, and PCA) boosted classification overall accuracy. Moreover, long-term surface water changes showed a downward trend in five study sites. Comparing the latest year’s water surface area (2021) with the maximum long-term extent showed that all study sites experienced a significant reduction (16–62%). Analysis of climate factors’ impacts also revealed that precipitation (0.51 ≤ R2 ≤ 0.79) was more correlated than the temperature (0.22 ≤ R2 ≤ 0.39) with water surface area changes.
Within water resources management, surface water area (SWA) variation plays a vital role in hydrological processes as well as in agriculture, environmental ecosystems, and ecological processes. The monitoring of long-term spatiotemporal SWA changes is even more critical within highly populated regions that have an arid or semi-arid climate, such as Iran. This paper examined variations in SWA in Iran from 1990 to 2021 using about 18,000 Landsat 5, 7, and 8 satellite images through the Google Earth Engine (GEE) cloud processing platform. To this end, the performance of twelve water mapping rules (WMRs) within remotely-sensed imagery was also evaluated. Our findings revealed that (1) methods which provide a higher separation (derived from transformed divergence (TD) and Jefferies–Matusita (JM) distances) between the two target classes (water and non-water) result in higher classification accuracy (overall accuracy (OA) and user accuracy (UA) of each class). (2) Near-infrared (NIR)-based WMRs are more accurate than short-wave infrared (SWIR)-based methods for arid regions. (3) The SWA in Iran has an overall downward trend (observed by linear regression (LR) and sequential Mann–Kendall (SQMK) tests). (4) Of the five major water basins, only the Persian Gulf Basin had an upward trend. (5) While temperature has trended upward, the precipitation and normalized difference vegetation index (NDVI), a measure of the country’s greenness, have experienced a downward trend. (6) Precipitation showed the highest correlation with changes in SWA (r = 0.69). (7) Long-term changes in SWA were highly correlated (r = 0.98) with variations in the JRC world water map.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.