Alogliptin benzoate, a member of dipeptidyl peptidase-4 inhibitors, is a recent drug developed by Takeda Pharmaceutical Company for the treatment of Type 2 diabetes; it potentiates the effect of incretin hormones through the inhibition of their degradation. Alogliptin can be used alone or in combination therapy. A new sensitive and rapid HPLC method was developed for the determination of alogliptin benzoate in bulk and pharmaceutical dosage forms; it was validated according to ICH and FDA guidelines. The HPLC analysis was performed on the Agilent 1200 system equipped with a Hypersil Gold Thermo Scientific C18 (250 cm × 4.6 mm) 5 µm column, with a mixture of acetonitrile and ammonium carbonate buffer in the ratio of 55 : 45 v/v as the mobile phase, at the flow rate of 1.0 mL/min. The detection was performed at the wavelength (λ) of 277, and the retention time of alogliptin benzoate was around 4 min. The total run time was 6.0 min. The calibration plot gave linear relationship over the concentration range of 85–306 µg/ml. The LOD and LOQ were 0.03 and 0.09 μg, respectively. The accuracy of the proposed method was determined by recovery studies and was found to be 100.3%. The repeatability testing for both standard and sample solutions showed that the method is precise within the acceptable limits. RSD% of the determination of precision was <2%. The results of robustness and solutions stability studies were within the acceptable limits as well. The proposed method showed excellent linearity, accuracy, precision, specificity, robustness, LOD, LOQ, and system suitability results within the acceptance criteria. In addition, the main features of the developed method are low run time and retention time around 4 min.
Background The Pfizer BioNTech COVID-19 vaccine was the first to receive emergency authorization and approval from the FDA. Therefore, it is preferred by most recipients; however, many people are concerned about the vaccine’s side effects. At the time of the study, December 2021, Palestine lacked a national reporting system for monitoring adverse vaccine effects. Therefore, this study investigates the post-vaccine adverse events following the Pfizer/BioNTech COVID-19 Vaccine administration in Palestine and identifies the occurrence, extent, and severity among university staff, employees, and students at Birzeit University. Method A questionnaire-based retrospective cross-sectional study was conducted using a university website (Ritaj), social media platforms (e.g., Facebook and Telegram), and in-person interviews. The Chi-square, Fisher’s exact, and McNemar’s tests were used to investigate significant relationships. Data were analyzed using SPSS version 22. Results In total, 1137 participants completed the questionnaire, 33.2% were males, and the mean age was 21.163 years. All participants received at least one dose of the Pfizer-BioNTech COVID-19 vaccine. Approximately one-third of participants reported no adverse effects after receiving the first, second, or third doses (34%, 33.6%, and 32.5%, respectively). The most commonly reported adverse events were fever, chills, headache, fatigue, pain and swelling at the injection site, muscle pain, and joint pain. Allergic reactions were reported by 12.7% of the participants; furthermore, participants with a history of allergy or anaphylaxis before vaccination had a significantly higher tendency for post-vaccination allergic reactions. Eight participants reported rare side effects, including 7 (0.6%) cases of thrombocytopenia and one (0.1%) case of myocarditis. Males aged less than 20 years and smokers were significantly less likely to complain of adverse events. The number of reported side effects was significantly higher after the second vaccine dose than after the first dose. Finally, participants infected with COVID-19 before vaccination was significantly associated with side effects such as fever, chills, shortness of breath, and persistent cough. Conclusion In this study, the most common post- BNT162b2 Vaccination reported self-limiting side effects similar to those reported by Pfizer/BioNTech Company. However, higher rates of allergic reactions were reported in this sample. Rare side effects, such as thrombocytopenia and myocarditis, were reported by 8 participants. COVID vaccines have been developed at an accelerated pace, and vaccine safety is a top priority; therefore, standard monitoring through a national adverse event reporting system is necessary for safety assurance. Continuous monitoring and long-term studies are required to ensure vaccine safety.
Studies of the fronts which are created by the process of swelling, their movement and the effect of drug solubility on release mechanisms, are presented. Tablets comprising solely of hydroxypropyl methylcellulose (HPMC) (Metolose 90 SH 100 000 SR), HPMC with sodium diclofenac (relatively soluble in the buffer solution used) and HPMC with furosemide (insoluble in the buffer solution used) were prepared. The tablets were made by direct compression in a manual hydraulic press and the matrix swelling was studied by an optical analysis technique. During the experimental procedure measurements were taken of the gel layer dimensions, the movement of the swelling, and the erosion and diffusion fronts at different time points. These measurements allowed the investigation of the possible mechanisms involved in the swelling/release process. The results showed that the rate and mechanism of drug release from swellable matrices depends on the following factors: the dissolution, the diffusion of the drug, the translocation of undissolved drug particles in the gel layer, and the solubility of the drugs used. This is supported by the following: (a) the diffusion layer thickness, which is observed as a result of the presence of undissolved drug in the gel layer, increases in the case of the water insoluble drug furosemide and as a result the diffusion front converges on the erosion front; (b) from the analysis of the dissolution data it appears that sodium diclofenac is released as a result of diffusion via the gel layer as well as due to polymer relaxation and/or matrix erosion. Conversely, the release of furosemide is only dependent on the polymer relaxation and/or matrix erosion.
The effect of powder packing and porosity of specimens on the swelling properties of polymeric materials was studied, in various swelling liquids, such as distilled water and 0.1 N hydrochloric acid solution. Capsules, tablets and films of hydroxypropyl methylcellulose, poly(ethylene oxide) and sodium alginate were prepared, and their weight uptake after immersion into the above solutions was recorded as a function of time, in order to assess the swelling process. Measurements of some characteristics of the as-received powders were also performed in an attempt to classify the specimens prepared according to their porosity. Within the experimental conditions of this work, it was shown that the porosity of polymeric specimens is a dominant factor that controls their swelling behaviour. Increased porosity leads to fast initial rates of weight uptake and high extent of equilibrium swelling. On the other hand, dissolution and possible degradation of polymers susceptible to acid hydrolysis results in some variations from the above mentioned behaviour. With respect to the application in controlled release systems, the overall delivery rate from a polymeric specimen is expected to be a function of both swelling and disintegration characteristics of a specimen, and therefore, the weight uptake can be considered a measure of the release only in the case of polymers with low water solubility and increased stability to hydrolysis.
Background Diabetes mellitus (D.M.) is a chronic metabolic disease caused by decreased insulin secretion, which increases the risk of cardiovascular diseases. Evidence has shown that statins reduce cardiovascular risk in patients with diabetes; moreover, most clinical guidelines recommend statins. Objective This study aimed to assess the level and status of adherence to guidelines on statin prescription in patients with diabetes mellitus in a primary care setting in Palestine. Methods A retrospective cross-sectional descriptive study was conducted at an ambulatory center in Palestine. Data were collected by auditing prescription records and reviewing medical charts of patients with diabetes who visited the clinic from February 15 to March 17, 2021. The collected data included patient characteristics, comorbidities, lipid profiles, and statin prescription. A chi-square test was used to evaluate the appropriateness of the prescribed statins with different demographic and clinical variables. Statistical significance was set at p < 0.05. Statistical Package for Social Sciences (SPSS) version 22 was used to analyze the data. Results Out Of 262 diabetic patients included in the analysis, 74% were prescribed appropriate statin therapy according to the American Diabetes Association (ADA) guidelines, and 24% of patients had inappropriate statin therapy or needed statins. Furthermore, 82.8% were on high-intensity statins, while 11% were not taking any statins. More than 60% of patients had uncontrolled diabetes and hypertension. Conclusion Most guidelines recommend statin therapy in diabetic patients owing to its benefits in preventing cardiovascular complications. In this study, most patients were on appropriate STATIN therapy; however, 50% of diabetic patients had LDL of more than 100 mg/dl, and 25% were not prescribed statins, increasing their risk of ASCVD. Therefore, we recommend strict adherence to the established guidelines on statins prescribed to patients with diabetes to prevent cardiovascular complications, save lives, and reduce healthcare costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.