Astrocytes are central to iron and ascorbate homoeostasis within the brain. Although NTBI (non-transferrin-bound iron) may be a major form of iron imported by astrocytes in vivo, the mechanisms responsible remain unclear. The present study examines NTBI uptake by cultured astrocytes and the involvement of ascorbate and DMT1 (divalent metal transporter 1). We demonstrate that iron accumulation by ascorbate-deficient astrocytes is insensitive to both membrane-impermeant Fe(II) chelators and to the addition of the ferroxidase caeruloplasmin. However, when astrocytes are ascorbate-replete, as occurs in vivo, their rate of iron accumulation is doubled. The acquisition of this additional iron depends on effluxed ascorbate and can be blocked by the DMT1 inhibitor ferristatin/NSC306711. Furthermore, the calcein-accessible component of intracellular labile iron, which appears during iron uptake, appears to consist of only Fe(III) in ascorbate-deficient astrocytes, whereas that of ascorbate-replete astrocytes comprises both valencies. Our data suggest that an Fe(III)-uptake pathway predominates when astrocytes are ascorbate-deficient, but that in ascorbate-replete astrocytes, at least half of the accumulated iron is initially reduced by effluxed ascorbate and then imported by DMT1. These results suggest that ascorbate is intimately involved in iron accumulation by astrocytes, and is thus an important contributor to iron homoeostasis in the mammalian brain.
Ascorbate (vitamin C) is the major electron donor to a tPMET (transplasma membrane electron transport) system that was originally identified in human erythrocytes. This plasma membrane redox system appears to transfer electrons from intracellular ascorbate to extracellular oxidants (e.g. non-transferrin-bound iron). Although this phenomenon has been observed in nucleated cells, its mechanism and regulation are not well understood. In the present study we have examined both facets of this phenomenon in K562 cells and primary astrocyte cultures. Using ferricyanide as the analytical oxidant we demonstrate that tPMET is enhanced by dehydroascorbate uptake via facilitative glucose transporters, and subsequent accumulation of intracellular ascorbate. Additionally, we demonstrate that this stimulation is not due to ascorbate that is released from the cells, but is dependent only on a restricted intracellular pool of the vitamin. Substrate-saturation kinetics suggest an enzyme-catalysed reaction across the plasma membrane by an as-yet-unidentified reductase that relies on extensive recycling of intracellular ascorbate. Inhibition of ascorbate-stimulated tPMET by the NHE (Na(+)/H(+)-exchanger) inhibitors amiloride and 5-(N-ethyl-N-isopropyl)amiloride, which is diminished by bicarbonate, suggests that tPMET activity may be regulated by intracellular pH. In support of this hypothesis, tPMET in astrocytes was significantly inhibited by ammonium chloride-pulse-induced intracellular acidification, whereas it was significantly stimulated by bicarbonate-induced intracellular alkalinization. These results suggest that ascorbate-dependent tPMET is enzyme-catalysed and is modulated by NHE activity and intracellular pH.
Lead intoxication in humans is characterized by cognitive impairments, particularly in the domain of memory, where evidence indicates that glutamatergic neurotransmission may be impacted. Animal and cell culture studies have shown that lead decreases the expression and activity of glutamine synthetase (GS) in astrocytes, yet the basis of this effect is uncertain. To investigate the mechanism responsible, the present study exposed primary astrocyte cultures to a range of concentrations of lead acetate (0–330 μM) for up to 24 h. GS activity was significantly reduced in cells following 24 h incubation with 100 or 330 μM lead acetate. However, no reduction in GS activity was detected when astrocytic lysates were co-incubated with lead acetate, suggesting that the mechanism is not due to a direct interaction and involves intact cells. Since GS is highly sensitive to oxidative stress, the capacity of lead to inhibit the clearance of hydrogen peroxide (H2O2) was investigated. It was found that exposure to lead significantly diminished the capacity of astrocytes to degrade H2O2, and that this was due to a reduction in the effectiveness of the glutathione system, rather than to catalase. These results suggest that the inhibition of GS activity in lead poisoning is a consequence of slowed H2O2 clearance, and supports the glutathione pathway as a primary therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.