Abstract:In this paper a combined controller is proposed for nonlinear dynamical systems. The controller is constructed by a fuzzy wavelet network and nonlinear model predictive control. Chaotic optimization, which is fast and robust, is applied to generate optimized controlled input in nonlinear model predictive control. The ability of the fuzzy wavelet neural network and the proposed controller is shown by simulation. It is illustrated that the proposed method is able to increase the speed of tracking in addition to having very little steady state error. Using chaotic optimization makes the controller robust in the presence of noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.