Numerous heavy-tailed distributions are used for modeling financial data and in problems related to the modeling of economics processes. These distributions have higher peaks and heavier tails than normal distributions. Moreover, in some situations, we cannot observe complete information about the data. Employing the efficient estimation method and then choosing the best model in this situation are very important. Thus, the purpose of this article is to propose a new interval for comparing the two heavy-tailed candidate models and examine its suitability in the financial data under complete and censored samples. This interval is equivalent to encapsulating the results of many hypotheses tests. A maximum likelihood estimator (MLE) is used for evaluating the parameters of the proposed heavy-tailed distribution. A real dataset representing the top 30 companies of the Tehran Stock Exchange indices is used to illustrate the derived results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.