This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The transfer model suggests that urea unfolds proteins mainly by increasing the solubility of the amide backbone, probably through urea-induced increase in hydrogen bonding. Other studies suggest that urea addition increases the magnitude of solvent-solute van der Waals interactions, which increases the solubility of nonpolar sidechains. More recent analyses hypothesize that urea has a similar effect in increasing the solubility of backbone and sidechain groups. In this work, we compare the effects of urea addition on the solvation of amides and alkyl groups. At first, we study the effects of urea addition upon solvent hydrogen bonding acidity and basicity through the perturbation in the fluorescence spectrum of probes 1-AN and 1-DMAN. Our results demonstrate that the solvent's hydrogen bonding properties are minimally affected by urea addition. Subsequently, we show that urea addition does not perturb the intra-molecular hydrogen bonding in salicylic acid significantly. Finally, we investigate how urea preferentially interacts with amide and alkyl groups moieties in water by comparing the effects of urea addition upon the solubility of acetaminophen and 4-tertbutylphenol. We show that urea affects amide and tbutyl solubility (lowers the transfer free energy of both amide (backbone) and alkyl (sidechain) groups) in a similar fashion. In other words, preferential interaction of urea with both moieties contributes to protein denaturation.
Streptococcus pyogenes, or Group A Streptococcus, is a Gram-positive bacterium that can be both a human commensal and pathogen. Central to this dichotomy are temperate bacteriophages that incorporate into the bacterial genome as a prophage. These genetic elements encode both the phage proteins as well as toxins harmful to the human host. One such conserved phage protein paratox (Prx) is always found encoded adjacent to the toxin genes and this linkage is preserved during transduction. Within Streptococcus pyogenes, Prx functions to inhibit the quorum-sensing ComRS receptor-signal pair that is the master regulator of natural competence, or the ability to uptake endogenous DNA. Specifically, Prx directly binds and inhibits the receptor ComR by unknown mechanism. To understand how Prx inhibits ComR at the molecular level we pursued an X-ray crystal structure of Prx bound to ComR. The structural data supported by solution X-ray scattering data demonstrate that Prx induces a conformational change in ComR to directly access the DNA binding domain. Furthermore, electromobility shift assays and competition binding assays reveal that Prx effectively uncouples the inter-domain conformational change that is required for activation of ComR by the signaling molecule XIP. Although to our knowledge the molecular mechanism of quorum-sensing inhibition by Prx is unique, it is analogous to the mechanism employed by the phage protein Aqs1 in Pseudomonas aeruginosa. Together, this demonstrates an example of convergent evolution between Gram-positive and Gram-negative phages to inhibit quorum-sensing, and highlights the versatility of small phage proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.