The global trend toward a green sustainable future encouraged the penetration of renewable energies into the electricity sector to satisfy various demands of the market. Successful and steady integrations of renewables into the microgrids necessitate building reliable, accurate wind and solar power forecasters adopting these renewables' stochastic behaviors. In a few reported literature studies, machine learning- (ML-) based forecasters have been widely utilized for wind power and solar power forecasting with promising and accurate results. The objective of this article is to provide a critical systematic review of existing wind power and solar power ML forecasters, namely artificial neural networks (ANNs), recurrent neural networks (RNNs), support vector machines (SVMs), and extreme learning machines (ELMs). In addition, special attention is paid to metaheuristics accompanied by these ML models. Detailed comparisons of the different ML methodologies and the metaheuristic techniques are performed. The significant drawn-out findings from the reviewed papers are also summarized based on the forecasting targets and horizons in tables. Finally, challenges and future directions for research on the ML solar and wind prediction methods are presented. This review can guide scientists and engineers in analyzing and selecting the appropriate prediction approaches based on the different circumstances and applications.
Accurate, timely air quality index (AQI) forecasting helps industries in selecting the most suitable air pollution control measures and the public in reducing harmful exposure to pollution. This article proposes a comprehensive method to forecast AQIs. Initially, the work focused on predicting hourly ambient concentrations of PM2.5 and PM10 using artificial neural networks. Once the method was developed, the work was extended to the prediction of other criteria pollutants, i.e., O3, SO2, NO2, and CO, which fed into the process of estimating AQI. The prediction of the AQI not only requires the selection of a robust forecasting model, it also heavily relies on a sequence of pre-processing steps to select predictors and handle different issues in data, including gaps. The presented method dealt with this by imputing missing entries using missForest, a machine learning-based imputation technique which employed the random forest (RF) algorithm. Unlike the usual practice of using RF at the final forecasting stage, we utilized RF at the data pre-processing stage, i.e., missing data imputation and feature selection, and we obtained promising results. The effectiveness of this imputation method was examined against a linear imputation method for the six criteria pollutants and the AQI. The proposed approach was validated against ambient air quality observations for Al-Jahra, a major city in Kuwait. Results obtained showed that models trained using missForest-imputed data could generalize AQI forecasting and with a prediction accuracy of 92.41% when tested on new unseen data, which is better than earlier findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.