BackgroundRecent evidence has suggested that peripheral inflammatory responses induced by lipopolysaccharides (LPS) play an important role in neuropsychiatric dysfunction in rodents. Interleukin-1β (IL-1β), a pro-inflammatory cytokine, has been proposed to be a key mediator in a variety of behavioral dysfunction induced by LPS in mice. Thus, inhibition of IL-1β may have a therapeutic benefit in the treatment of neuropsychiatric disorders. However, the precise underlying mechanism of knock-down of IL-1β in repairing behavioral changes by LPS remains unclear.MethodsThe mice were treated with either IL-1β shRNA lentivirus or non-silencing shRNA control (NS shRNA) lentivirus by microinjection into the dentate gyrus (DG) regions of the hippocampus. After 7 days of recovery, LPS (1 mg/kg, i.p.) or saline was administered. The behavioral task for memory deficits was conducted in mice by the novel object recognition test (NORT), the anxiety-like behaviors were evaluated by the elevated zero maze (EZM), and the depression-like behaviors were examined by the sucrose preference test (SPT) and the forced swimming test (FST). Furthermore, the levels of malondialdehyde (MDA), superoxide dismutase (SOD), nuclear factor erythroid-derived 2-like 2 (Nrf2), heme oxygenase 1 (HO1), IL-1β, tumor necrosis factor (TNF-α), neuropeptide VGF (non-acronymic), and brain-derived neurotrophic factor (BDNF) were assayed.ResultsOur results demonstrated that IL-1β knock-down in the hippocampus significantly attenuated the memory deficits and anxiety- and depression-like behaviors induced by LPS in mice. In addition, IL-1β knock-down ameliorated the oxidative and neuroinflammatory responses and abolished the downregulation of VGF and BDNF induced by LPS.ConclusionsCollectively, our findings suggest that IL-1β is necessary for the oxidative and neuroinflammatory responses produced by LPS and offers a novel drug target in the IL-1β/oxidative/neuroinflammatory/neurotrophic pathway for treating neuropsychiatric disorders that are closely associated with neuroinflammation, oxidative stress, and the downregulation of VGF and BDNF.
Peripheral inflammatory responses affect central nervous system (CNS) function, manifesting in symptoms of memory deficits, depression, and anxiety. Previous studies have revealed that neuropeptide VGF (nonacronymic) C-terminal peptide TLQP-62 rapidly reinforces brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signaling, regulating memory consolidation and antidepressant-like action. However, whether it is beneficial for lipopolysaccharide (LPS)-induced neuropsychiatric dysfunction in mice is unknown. Herein, we explored the involvement of BDNF/TrkB signaling and biochemical alterations in inflammatory or oxidative stress markers in the alleviating effects of TLQP-62 on LPS-induced neuropsychiatric dysfunction. The mice were treated with TLQP-62 (2 μg/side) via intracerebroventricular (i.c.v.) injection 1 h before LPS (0.5 mg/kg, i.p.) administration. Our results showed that a single treatment with LPS (0.5 mg/kg, i.p) is sufficient to produce recognition memory deficits (in the novel object recognition test), depression-like behavior (in the forced swim test and sucrose preference test), and anxiety-like behavior (in the elevated zero maze). However, pretreatment with TLQP-62 prevented LPS-induced behavioral dysfunction, neuroinflammatory, and oxidative responses. In addition, our results further demonstrated that a reduction in BDNF expression mediated by BDNF-shRNA lentivirus significantly blocked the effects of TLQP-62, suggesting the critical role of BDNF/TrkB signaling in the neuroprotective effects of TLQP-62 in the mice. In conclusion, TLQP-62 could be a therapeutic approach for neuropsychiatric disorders, which are closely associated with neuroinflammation and oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.