Delivering sufficient water to the evaporation surface/interface is one of the most widely adopted strategies to overcome salt accumulation in solar‐driven interfacial desalination. However, water transport and heat conduction loss are positively correlated, resulting in the trade‐off between thermal localization and salt resistance. Herein, a 3D hydrogel evaporator with vertical radiant vessels is prepared to surmount the long‐standing trade‐off, thereby achieving high‐rate and stable solar desalination of high‐salinity. Experiments and numerical simulations reveal that the unique hierarchical structure, which consists of a large vertical vessel channel, radiant vessels, and porous vessel walls, facilitates strong self‐salt‐discharge and low longitudinal thermal conductivity. With the structure employed, a groundbreaking comprehensive performance, under one sun illumination, of evaporation rate as high as 3.53 kg m−2 h−1, salinity of 20 wt%, and a continuous 8 h evaporation is achieved, which thought to be the best reported result from a salt‐free system. This work showcases the preparation method of a novel hierarchical microstructure, and also provides pivotal insights into the design of next‐generation solar evaporators of high‐efficiency and salt tolerance.
Due to its promising potential applications in seawater desalination and purification, solar steam conversion has attracted tremendous attention recently. The light‐to‐heat conversion capacity of solar absorbers directly affects the rate at which freshwater is produced by the evaporation system. Herein, an efficient double‐layer evaporator is developed using MoS2/LaF3/PDMS ink as an absorber that is printed onto a commercial PTFE membrane by the controlled ink‐spray method. The LaF3 nanoparticles‐decorated MoS2 nanoflowers nanocomposite exhibits enhanced adsorption of sunlight due to semiconductor/solid electrolyte interface synergetic effect‐induced broadband absorption ability. Combining the advantages of local heating and rapid vapor emission, the water evaporation rate of the evaporator with spray ink in sunlight is 1.76 kg m−2 h−1 and the corresponding high light‐to‐heat conversion efficiency is 91%. Also, the membrane module has good operability, certain mechanical strength, and good long‐term stability. The synergistic effect of a rare‐earth solid electrolyte and semiconductor provides new ideas for the design and development of materials with high light‐to‐heat conversion efficiency and good thermal stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.