Interleukin-8 (IL-8), which is secreted by cancer cells undergoing epithelial-mesenchymal transition (EMT), can promote EMT in adjacent epithelial-like cells. MicroRNAs (miRNAs/miRs) can affect the expression of target genes via binding to their 3'-untranslated regions (3'-UTRs), which may subsequently affect the biological behaviors of cancer cells. In our previous study, miR-520c-3p was predicted to directly target the 3'-UTR of IL-8. Therefore, the present study was carried out to investigate whether miR-520c-3p can interact with the IL-8 gene and regulate the EMT of breast cancer cells. Web-based prediction algorithms were used to identify miRNAs that potentially target the IL-8 transcript. Luciferase reporter assays were used to confirm the targeting of IL-8 by miR-520c-3p. Reverse transcription-quantitative PCR and western blot analyses were used to examine the levels of IL-8 and EMT-related genes in breast cancer cells. The functional impact of miR-520c-3p on EMT phenotype was evaluated using Transwell and wound-healing assays, and rescue experiments were conducted by overexpressing IL-8 to determine its effect on cell properties. miR-520c-3p was predicted by all three databases, which strongly suggested its interaction with the 3'-UTR of IL-8. The relative Renilla luciferase activity of luciferase reporter construct containing the wild-type 3'-UTR of IL-8 was markedly decreased by miR-520c-3p transfection when compared with scrambled miRNA control transfection (P<0.001). In addition, compared with the scrambled miRNA control transfection, the overexpression of miR-520c-3p significantly reduced the expression of IL-8, and resulted in increased E-cadherin and decreased vimentin and fibronectin levels in MCF-7 and T47D cells (all P<0.001). Introduction of miR-520c-3p inhibited the invasion and migration of MCF-7 and T47D cells (all P<0.001). By contrast, the rescue of IL-8 expression led to the recovery of EMT-related protein expression patterns and cell motility and invasion capabilities. In conclusion, aberrant miR-520c-3p expression may lead to reduced IL-8 expression and promote the mesenchymal phenotype in breast cancer cells, thereby increasing invasive growth.
Cyclophosphamide (CTX) is widely used in various cancer therapies and in immunosuppression, and patients can still have babies after CTX chemotherapy. CTX directly causes primordial follicle loss with overactivation and DNA damage-induced apoptosis. Previous studies have shown that maternal exposure to CTX before conception increases the incidence of birth abnormalities and alters the methylation of genes in the oocytes of offspring. Mice were treated with a single dose of CTX (100 mg/kg) at post-natal day 21 and sacrificed 47 days later when primordial follicles surviving chemotherapy developed to the antral stage. Acute DNA damage and acceleration of the activation of primordial follicles after CTX treatment were repaired within several days, but the remaining follicle numbers remarkably decrease. Although partial surviving primordial follicle were developed to mature oocyte, oocyte quality hemostasis was impaired exhibiting aberrant meiosis progression, abnormal spindle and aneuploidy, mitochondrial dysfunction and increased endoplasmic reticulum stress. Thereafter, embryo development competency significantly decreased with fewer blastocyst formation after CTX exposure. CTX treatment resulted in alteration of DNA methylations and histone modifications in fully grown GV oocytes. Single-cell RNA-seq revealed CTX treatment suppressed multiple maternal genes’ transcription including many methyltransferases and maternal factor YAP1, which probably accounts for low quality of CTX-repaired oocyte. In vitro addition of lysophosphatidic acid (LPA) to embryo culture media to promote YAP1 nuclear localization improved CTX-repaired embryo developmental competence. This study provides evidence for the consistent toxic effect of CTX exposure during follicle development, and provide a new mechanism and new insights into future clinical interventions for fertility preservation.
Background Keto-analogues administration plays an important role in clinical chronic kidney disease (CKD) adjunctive therapy, however previous studies on their reno-protective effect mainly focused on kidney pathological changes induced by nephrectomy. This study was designed to explore the currently understudied alternative mechanisms by which compound α-ketoacid tablets (KA) influenced ischemia–reperfusion (IR) induced murine renal injury, and to probe the current status of KA administration on staving CKD progression in Chinese CKD patients at different stages. Methods In animal experiment, IR surgery was performed to mimic progressive chronic kidney injury, while KA was administrated orally. For clinical research, a retrospective cohort study was conducted to delineate the usage and effects of KA on attenuating CKD exacerbation. End-point CKD event was defined as 50% reduction of initial estimated glomerular filtration rate (eGFR). Kaplan–Meier analysis and COX proportional hazard regression model were adopted to calculate the cumulative probability to reach the end-point and hazard ratio of renal function deterioration. Results In animal study, KA presented a protective effect on IR induced renal injury and fibrosis by attenuating inflammatory infiltration and apoptosis via inhibition of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. In clinical research, after adjusting basic demographic factors, patients at stages 4 and 5 in KA group presented a much delayed and slower incidence of eGFR decrease compared to those in No-KA group (hazard ratio (HR) = 0.115, 95% confidence interval (CI) 0.021–0.639, p = 0.0134), demonstrating a positive effect of KA on staving CKD progression. Conclusion KA improved IR induced chronic renal injury and fibrosis, and seemed to be a prospective protective factor in end stage renal disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.