Proxima b is a terrestrial-mass planet in the habitable-zone of Proxima Centauri. Proxima Centauri's high stellar activity however casts doubt on the habitability of Proxima b: sufficiently bright and frequent flares and any associated proton events may destroy the planet's ozone layer, allowing lethal levels of UV flux to reach its surface. In March 2016, the Evryscope observed the first naked-eyebrightness superflare detected from Proxima Centauri. Proxima increased in optical flux by a factor of ∼68 during the superflare and released a bolometric energy of 10 33.5 erg, ∼10× larger than any previously-detected flare from Proxima. Over the last two years the Evryscope has recorded 23 other large Proxima flares ranging in bolometric energy from 10 30.6 erg to 10 32.4 erg; coupling those rates with the single superflare detection, we predict at least five superflares occur each year. Simultaneous high-resolution HARPS spectroscopy during the Evryscope superflare constrains the superflare's UV spectrum and any associated coronal mass ejections. We use these results and the Evryscope flare rates to model the photochemical effects of NO x atmospheric species generated by particle events from this extreme stellar activity, and show that the repeated flaring may be sufficient to reduce the ozone of an Earth-like atmosphere by 90% within five years; complete depletion may occur within several hundred kyr. The UV light produced by the Evryscope superflare would therefore have reached the surface with ∼100× the intensity required to kill simple UV-hardy microorganisms, suggesting that life would have to undergo extreme adaptations to survive in the surface areas of Proxima b exposed to these flares.
Superflares may provide the dominant source of biologically relevant UV radiation to rocky habitable-zone M-dwarf planets (M-Earths), altering planetary atmospheres and conditions for surface life. The combined line and continuum flare emission has usually been approximated by a 9000 K blackbody. If superflares are hotter, then the UV emission may be 10 timeshigher than predicted from the optical. However, it is unknown for how long M-dwarf superflares reach temperatures above 9000 K. Only a handful of M-dwarf superflares have been recorded with multiwavelength high-cadence observations. We double the total number of events in the literature using simultaneous Evryscope and Transiting Exoplanet Survey Satellite observations to provide the first systematic exploration of the temperature evolution of M-dwarf superflares. We also increase the number of superflaring M dwarfs with published time-resolved blackbody evolution by ∼10×. We measure temperatures at 2 minutes cadence for 42 superflares from 27 K5-M5 dwarfs. We find superflare peak temperatures (defined as the mean of temperatures corresponding to flare FWHM) increase with flare energy and impulse. We find the amount of time flares emit at temperatures above 14,000 K depends on energy. We discover that 43% of the flares emit above 14,000 K, 23% emit above 20,000 K and 5% emit above 30,000 K. The largest and hottest flare briefly reached 42,000 K. Some do not reach 14,000 K. During superflares, we estimate M-Earths orbiting <200 Myr stars typically receive a top-of-atmosphere UV-C flux of ∼120 W m −2 and up to 10 3 W m −2 , 100-1000 timesthe timeaveraged X-ray and UV flux from Proxima Cen.
We search for superflares from 4,068 cool stars in 2+ years of Evryscope photometry, focusing on those with high-cadence data from both Evryscope and TESS. The Evryscope array of small telescopes observed 575 flares from 284 stars, with a median energy of 10 34.0 erg. Since 2016, Evryscope has enabled the detection of rare events from all stars observed by TESS through multi-year, high-cadence continuous observing. We report ∼2× the previous largest number of 10 34 erg high-cadence flares from nearby cool stars. We find 8 flares with amplitudes of 3+ g magnitudes, with the largest reaching 5.6 magnitudes and releasing 10 36.2 erg. We observe a 10 34 erg superflare from TOI-455 (LTT 1445), a mid-M with a rocky planet candidate a . We measure the superflare rate per flare-star and quantify the average flaring of active stars as a function of spectral type, including superflare rates, FFDs, and typical flare amplitudes in g . We confirm superflare morphology is broadly consistent with magnetic re-connection. We estimate starspot coverage necessary to produce superflares, and hypothesize maximum-allowed superflare energies and waiting-times between flares corresponding to 100% coverage of the stellar hemisphere. We observe decreased flaring at high galactic latitudes. We explore the effects of superflares on ozone loss to planetary atmospheres: we observe 1 superflare with sufficient energy to photo-dissociate all ozone in an Earth-like atmosphere in one event. We find 17 stars that may deplete an Earth-like atmosphere via repeated flaring. Of the 1822 stars around which TESS may discover temperate rocky planets, we observe 14.6±2% emit large flares.
The Evryscope is a telescope array designed to open a new parameter space in optical astronomy, detecting short timescale events across extremely large sky areas simultaneously. The system consists of a 780 MPix 22-camera array with an 8150 sq. deg. field of view, 13" per pixel sampling, and the ability to detect objects down to m g 16 in each 2 minute dark-sky exposure. The Evryscope, covering 18,400 sq.deg. with hours of high-cadence exposure time each night, is designed to find the rare events that require all-sky monitoring, including transiting exoplanets around exotic stars like white dwarfs and hot subdwarfs, stellar activity of all types within our galaxy, nearby supernovae, and other transient events such as gamma ray bursts and gravitational-wave electromagnetic counterparts. The system averages 5000 images per night with ∼300,000 sources per image, and to date has taken over 3.0M images, totalling 250TB of raw data. The resulting light curve database has light curves for 9.3M targets, averaging 32,600 epochs per target through 2018. This paper summarizes the hardware and performance of the Evryscope, including the lessons learned during telescope design, electronics design, a procedure for the precision polar alignment of mounts for Evryscope-like systems, robotic control and operations, and safety and performance-optimization systems. We measure the on-sky performance of the Evryscope, discuss its data-analysis pipelines, and present some example variable star and eclipsing binary discoveries from the telescope. We also discuss new discoveries of very rare objects including 2 hot subdwarf eclipsing binaries with late M-dwarf secondaries (HW Vir systems), 2 white dwarf / hot subdwarf short-period binaries, and 4 hot subdwarf reflection binaries. We conclude with the status of our transit surveys, M-dwarf flare survey, and transient detection.
We measure rotation periods and sinusoidal amplitudes in Evryscope light curves for 122 two-minute K5-M4 TESS targets selected for strong flaring. The Evryscope array of telescopes has observed all bright nearby stars in the south, producing 2-minute cadence light curves since 2016. Long-term, high-cadence observations of rotating flare stars probe the complex relationship between stellar rotation, starspots, and superflares. We detect periods from 0.3487 to 104 days and observe amplitudes from 0.008 to 0.216 g′ mag. We find that the Evryscope amplitudes are larger than those in TESS with the effect correlated to stellar mass (p-value=0.01). We compute the Rossby number (R o ) and find that our sample selected for flaring has twice as many intermediate rotators (0.04<R o <0.4) as fast (R o <0.04) or slow (R o >0.44) rotators; this may be astrophysical or a result of period detection sensitivity. We discover 30 fast, 59 intermediate, and 33 slow rotators. We measure a median starspot coverage of 13% of the stellar hemisphere and constrain the minimum magnetic field strength consistent with our flare energies and spot coverage to be 500 G, with later-type stars exhibiting lower values than earlier-type stars. We observe a possible change in superflare rates at intermediate periods. However, we do not conclusively confirm the increased activity of intermediate rotators seen in previous studies. We split all rotators at R o ∼0.2 into bins of P Rot <10 days and P Rot >10 days to confirm that short-period rotators exhibit higher superflare rates, larger flare energies, and higher starspot coverage than do long-period rotators, at p-values of 3.2×10 −5 , 1.0×10 −5 , and 0.01, respectively.Unified Astronomy Thesaurus concepts: Starspots (1572); Optical flares (1166); Sky surveys (1464); Stellar rotation (1629); Time series analysis (1916)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.