Water-soluble silsesquioxane nanoparticles (NPs) incorporating viologen groups (PXV; 1,1'-bis[3-(trimethoxysilyl)propyl]-4,4'-bipyridinium iodide) have been synthesized by sol-gel polymerization. The electrochromic properties of the bulk film fabricated by layer-by-layer (LbL) assembly have been examined, along with their incorporation into solid-state devices. The orange LbL films show high thermal stability and exhibit a maximum UV-vis absorption at 550 nm. Electrochromic switching of the NPs in liquid electrolyte as well as in the solid state was evaluated by a kinetic study via measurement of the change in transmission (% T) at the maximum contrast. Cyclic voltammograms of the PXV NP LbL films exhibit a reversible reduction at -0.6 V vs Ag/AgCl in a 0.1 M NaClO4(aq) solution, revealing good electrochromic stability, with a color change from orange to dark purple-blue at applied potentials ranging from -0.7 to -1.3 V. Cathodically coloring PXV NP solid-state devices exhibit a switching time of a few seconds between the purple-blue reduced state and the orange oxidized state, showing a contrast of 50% at 550 nm and a coloration efficiency of 205 cm2/C. Their solubility and fairly fast electrochromic switching ( approximately 3 s) at low switching voltages (between 0 and 3.0 V), along with their stability under atmospheric conditions, make PXV NPs good candidates for electrochromic displays.
M.; Montazami, Reza; et al., "Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers," Appl. Phys. Lett. 92, 033304 (2008); http://dx
Water-soluble sulfonated monomer based on 3,4-propylenedioxythiophene (ProDOT-sultone) was synthesized and characterized for the first time via the O-alkylation of the corresponding unreactive β,β-disubstituted hydroxyl group with propane sultone in the presence of a catalytic amount of 1,4-diazabicyclo[2.2.2]octane (DABCO). This new monomer was oxidatively polymerized to produce regioregular water-soluble conjugated anionic polyelectrolyte, which was then used for the fabrication of solid-state electrochromic devices using the layer-by-layer (LbL) deposition method. These solid-state devices were found to exhibit better electrochromic properties in terms of color contrast, switching time, coloration efficiency (CE), surface control electroactivity, and conductivity in thin films compared with the corresponding water-soluble regiorandom 3,4-ethylenedioxythiophene (EDOT) derivative. For the 40 and 80 bilayer solid-state electrochromic devices, the electrochemical contrast was observed to be 31 and 40% at 570 nm with fast solid-state switching times of 100 and 220 ms, respectively, indicating faster movement of the ions in and out of the films. Furthermore, the CE was found to be as high as 250 cm 2 /C for the 80 bilayer device and was independent of the device thickness, indicating the full accessibility of all of the ionic sites, even in thicker films. Four-point probe conductivity of the LbL and in situ conductivity of solution cast films were found to be in the range of 10 -4 and 10 -3 S/cm, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.