Experimental and computational studies were performed to understand the electronic structure of ternary perovskites (ASnO(3), A = Ca, Sr, Ba, Cd), pyrochlores (RE(2)Sn(2)O(7), RE = Y, La, Lu; Cd(2)Sb(2)O(7)), and defect pyrochlore oxides (Ag(2)Sb(2)O(6)) containing the main group ions Sn(4+) and Sb(5+). In all compounds, the lowest energy states in the conduction band arise primarily from the antibonding Sn/Sb 5s-O 2p interaction. In the alkaline-earth stannate perovskites (BaSnO(3), SrSnO(3), and CaSnO(3)) the conduction bandwidth decreases strongly in response to the octahedral tilting distortion triggered by the decreasing size of the alkaline-earth cation. This in turn leads to a corresponding increase in the band gap from 3.1 eV in BaSnO(3) to 4.4 eV in CaSnO(3). The band gap of CdSnO(3) is relatively small (3.0 eV) considering the large octahedral tilting distortion. The origin of this apparent anomaly is the mixing between the empty Cd 5s orbitals and the antibonding Sn 5s-O 2p states. This mixing leads to a widening of the conduction band and a corresponding decrease in the band gap. The participation of the normally inert A-site cation in the electronic structure near the Fermi level can be considered an inductive effect, as it utilizes substitution on the A-site to directly modify the electronic structure of the SnO(3)(2)(-) framework. While the pyrochlore structure is more complicated, the energy level and width of the lowest energy conduction band can be analyzed in a manner similar to that utilized on the perovskite structure. The Sn-O-Sn and Sb-O-Sb bonds are highly distorted from linear geometry in pyrochlore, leading to a relatively narrow conduction band and a wide band gap. In Cd(2)Sb(2)O(7) and Ag(2)Sb(2)O(6) the Cd(2+) and Ag(+) ions exhibit a strong inductive effect that widens the conduction band and lowers the band gap significantly, very similar to the effect observed in the perovskite form of CdSnO(3).
Thin films of the misfit cobaltite Ca 3 Co 4 O 9 were grown on (0001)-orient ed (c-cut) sapphire substrates, using pulsed-laser deposition techniques. The dependence of the thermoelectric /transport properties on the film growth conditions was investigated. The optimal conditions (for low resistivities) were found to be 600 °C, 0.1 -0.2 mbar of oxygen pressure, and 1.7 J/cm 2 . These films exhibited slightly metallic behaviour, consistent with in-plane resistivity curves of single crystals and c-axis magnetically aligned samples. Hall effect measurements showed the density of the hole-like carriers was 5.5×10 19 /cm 3 . The in-plane epitaxial relationship between the thin film and the sapphire substrate are investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.