A significant knowledge gap in nanotechnology is the absence of standardized protocols for examining the effect of engineered nanoparticles on soil microorganisms. In this study, agricultural soil was exposed to ZnO, SiO2, TiO2 and CeO2 nanoparticles at 1 mg g(-1). The toxicity effect was evaluated by thermal metabolism, the abundance of functional bacteria and enzymatic activity. ZnO and CeO2 nanoparticles were observed to hinder thermogenic metabolism, reduce numbers of soil Azotobacter, P-solubilizing and K-solubilizing bacteria and inhibit enzymatic activities. TiO2 nanoparticles reduced the abundance of functional bacteria and enzymatic activity. SiO2 nanoparticles slightly boosted the soil microbial activity. Pearson's correlation analysis showed that thermodynamic parameters had a strong correlation with abundance of functional bacteria and enzymatic activity. These findings demonstrated that the combined approach of monitoring thermal metabolism, functional bacteria and enzymatic activity is feasible for testing the ecotoxicity of nanoparticles on agricultural soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.