Objectively and accurately assessing pain in clinical settings is challenging. Previous studies showed that alpha oscillations of electroencephalogram data are correlated with subjective perceived pain. Based on this finding, this study is aimed at assessing chronic low back pain based on alpha oscillations. Multichannel electroencephalogram data were recorded from 27 subjects with chronic low back pain under the simple conditions of closing eyes or opening eyes. Spectral analyses were conducted to extract the alpha band responses, and the alpha powers were calculated for the two conditions, respectively. Normalized alpha power was calculated by subtracting the alpha power in the eyes-open condition from that in the eyes-closed condition. The correlation between the alpha power and the subjective pain intensity was evaluated in frontal, central, and posterior regions. The normalized alpha power in the central region was negatively correlated with the subjective pain intensity (
R
=
−
0.50
,
P
=
0.01
), with the strongest correlation occurring at the Cz electrode (
R
=
−
0.59
,
P
=
0.04
). The correlation analysis results demonstrated the possibility of using the differences of alpha spectral power between eyes-closed and eyes-open conditions as a measure for assessing chronic low back pain. The findings suggest that the normalized alpha power in the central region may be used as a measurable and quantitative indicator of chronic pain for clinical applications.
Excessive distraction in corrective spine surgery can lead to iatrogenic distraction spinal cord injury. Diagnosis of the location of the spinal cord injury helps in early removal of the injury source. The time-frequency components of the somatosensory evoked potential have been reported to provide information on the location of spinal cord injury, but most studies have focused on contusion injuries of the cervical spine. In this study, we established 19 rat models of distraction spinal cord injury at different levels and collected the somatosensory evoked potentials of the hindlimb and extracted their time-frequency components. Subsequently, we used k-medoid clustering and naive Bayes to classify spinal cord injury at the C5 and C6 level, as well as spinal cord injury at the cervical, thoracic, and lumbar spine, respectively. The results showed that there was a significant delay in the latency of the time-frequency components distributed between 15 and 30 ms and 50 and 150 Hz in all spinal cord injury groups. The overall classification accuracy was 88.28% and 84.87%. The results demonstrate that the k-medoid clustering and naive Bayes methods are capable of extracting the time-frequency component information depending on the spinal cord injury location and suggest that the somatosensory evoked potential has the potential to diagnose the location of a spinal cord injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.