This paper presents a 28-GHz CMOS four-element phased-array transceiver chip for the fifth-generation mobile network (5G) new radio (NR). The proposed transceiver is based on the local-oscillator (LO) phase-shifting architecture, and it achieves quasi-continuous phase tuning with less than 0.2-dB radio frequency (RF) gain variation and 0.3 • phase error. Accurate beam control with suppressed sidelobe level during beam steering could be supported by this work. At 28 GHz, a single-element transmitter-mode output P 1 dB of 15.7 dBm and a receiver-mode noise figure (NF) of 4.1 dB are achieved. The eight-element transceiver modules developed in this work are capable of scanning the beam from −50 • to +50 • with less than −9-dB sidelobe level. A saturated equivalent isotropic radiated power (EIRP) of 39.8 dBm is achieved at 0 • scan. In a 5-m overthe-air measurement, the proposed module demonstrates the first 512 quadrature amplitude modulation (QAM) constellation in the 28-GHz band. A data stream of 6.4 Gb/s in 256-QAM could be supported within a beam angle of ±50 • . The achieved maximum data rate is 15 Gb/s in 64-QAM. The proposed transceiver chip consumes 1.2 W/chip in transmitter mode and 0.59 W/chip in receiver mode.
This article presents the first 39-GHz phased-array transceiver (TRX) chipset for fifth-generation new radio (5G NR). The proposed transceiver chipset consists of 4 sub-array TRX elements with local-oscillator (LO) phase-shifting architecture and built-in calibration on phase and amplitude. The calibration scheme is proposed to alleviate phase and amplitude mismatch between each sub-array TRX element, especially for a large-array transceiver system in the base station (BS). Based on LO phase-shifting architecture, the transceiver has a 0.04-dB maximum gain variation over the 360 • full tuning range, allowing constant-gain characteristic during phase calibration. A phaseto-digital converter (PDC) and a high-resolution phase-detection mechanism are proposed for highly accurate phase calibration. The built-in calibration has a measured accuracy of 0.08°rms phase error and 0.01-dB rms amplitude error. Moreover, a pseudo-single-balanced mixer is proposed for LO-feedthrough (LOFT) cancellation and sub-array TRX LO-to-LO isolation. The transceiver is fabricated in standard 65-nm CMOS technology with flip-chip packaging. The 8TX-8RX phased-array transceiver module 1-m OTA measurement supports 5G NR 400-MHz 256-QAM OFDMA modulation with −30.0-dB EVM. The 64-element transceiver has a EIRP MAX of 53 dBm. The four-element chip consumes a power of 1.5 W in the TX mode and 0.5 W in the RX mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.