The FeCoNiCrAl0.1 high entropy alloys (HEAs) and pure copper (Cu) composite plates were successfully fabricated by the explosive welding technique using two different gap distances. The interfacial microstructure, elemental distribution, grain structure of vortex zone and hardness were characterized using optical microscopy (OM), scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), nanoindentation and micro-hardness tester. The explosive weldability window was calculated to verify the weldability of HEAs and Cu. The results indicated that the Cu/HEA composites presented typical wavy structures without visible defects and have an excellent bonding quality. The elements mixed and formed intermetallic compounds at the vortex zones. The grains near the vortex zones showed strong deformation, and phase transformation occurred. Compared with the matrix metals, the hardness of Cu and HEAs increased near the welding interface and sharply increased to 375 HV near the vortex zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.