As the most widely used gear measuring instrument, the gear measuring center can measure the individual deviations of a gear tooth flank other than the comprehensive deviations of the gear. However, gear transmission error is an important transmission performance indicator in the gear meshing process. It is an important trend of gear measuring to obtain the transmission error from individual deviations. In this study, a calculation method of gear transmission error is proposed based on the point clouds of the gear obtained by optical sensors. According to the gear meshing principle, a method is introduced to determine the contact status between the tooth flanks formed by the point clouds. According to this introduced method, the single tooth pair meshing process and the meshing process of multiple tooth pairs are analyzed to determine the gear transmission error curve. The comparison results of tooth contact analysis and gear measurement experiments verify the proposed virtual measurement method.
Line-structured laser sensors used in gear measuring provide a new way to acquire the perfect 3-D information of the complicated tooth flank with modification. This method leads to a series of problems, such as incident light occlusion, multiple reflection, system calibration and so on. The incident light occlusion poses severe problem on the integrity of the gear flank data acquired by the line-structured laser sensors. To understand the influence of the incident light occlusion during the cylindrical gear measuring and improve the efficiency of the measurement, this article analyzes this problem in depth. According to the position relation between the line-structure laser sensor and the gear, the projection theory is used to illustrate the incident light occlusion process between adjacent teeth and the model of the occlusion is built up. Four experiments are conducted to verify the validity of the model. This model applies to the cylindrical gear with different parameters. The influence of the modification on incident light occlusion zone could be ignored. On the basis of this model, the influence of the offset and the setting angle of the sensor on the incident light occlusion problem is thoroughly discussed, which gives a guide to control route planning and data acquiring during measuring the perfect information of the tooth flank.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.