Modulation of the reactivity of metallofullerenes is critical for production of metallofullerene derivatives with desired properties and functionalities. In this study, we investigate the effects of reduction and oxidation on the reactivity and regioselectivity in Diels–Alder reaction of metallofullerene La@C82 by means of density functional theory calculations. Because of the enhanced electron‐deficiency characteristic upon oxidation, the oxidized metallofullerene exhibits higher thermodynamic and kinetic reactivity as compared with neutral La@C82. The regioselectivity in the reaction of La@C82 with cylcopentadiene is remarkably changed after oxidation of the metallofullerene, which is explained in terms of the changes in the geometrical structure and the electronic structure of the metallofullerene. Quantitative analysis based on the activation‐strain model demonstrates that the low activation energy barrier for the reaction of the cation La@C82+ with cyclopentadiene originates from small strain energy and large interaction energy between the reactants. Energy decomposition analysis on the transition states of the reactions reveals that the exchange‐repulsion interaction energy is one of the critical factors that determine the kinetic reactivity of the metallofullerene. This study not only provides new theoretical insights on how to modulate the reactivity of metallofullerenes, but also offers guideline for future experimental synthesis of new metallofullerene derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.