MADS-box gene, one of the largest transcription factor families in plants, is a class of transcription factors widely present in eukaryotes. It plays an important role in plant growth and development and participates in the growth and development of flowers and fruits. Sweet potato is the seventh most important food crop in the world. Its tuberous roots, stems, and leaves contain a large number of proteins, lipids, carotenoids, anthocyanins, conjugated phenolic acids, and minerals, which have high edible, forage, and medicinal value, and is also an important energy crop. At present, MADS-box genes in sweet potato have rarely been reported, and there has been no study on the genome-wide identification and classification of MADS-box genes in Ipomoea batatas. This study provided the first comprehensive analysis of sweet potato MADS-box genes. We identified 95 MADS-box genes, analyzed the structure and protein of sweet potato MADS-box genes, and categorized them based on phylogenetic analysis with Arabidopsis MADS-box proteins. Chromosomal localization indicated an unequal number of MADS-box genes in all 14 chromosomes except LG3, with more than 10 MADS-box genes located on chromosomes LG7, LG11, and LG15. The MADS domain and core motifs of the sweet potato MADS-box genes were identified by motif analysis. We identified 19 MADS-box genes with collinear relationships and analyzed duplication events. Cis-acting elements, such as light-responsive, auxin-responsive, drought-inducible, and MeJA-responsive elements, were found in the promoter region of the MADS-box genes in sweet potato, which further indicates the basis of MADS-box gene regulation in response to environmental changes and hormones. RNA-seq suggested that sweet potato MADS-box genes exhibit tissue-specific expression patterns, with 34 genes highly expressed in sweet potato flowers and fruits, and 19 genes highly expressed in the tuberous root, pencil root, or fibrous root. qRT-PCR again validated the expression levels of the 10 genes and found that IbMADS1, IbMADS18, IbMADS19, IbMADS79, and IbMADS90 were highly expressed in the tuberous root or fibrous root, and IbMADS18, IbMADS31, and IbMADS83 were highly expressed in the fruit. In this study, the molecular basis of MADS-box genes of sweet potato was analyzed from various angles. The effects of MADS-box genes on the growth and development of sweet potato were investigated, which may provide a certain theoretical basis for molecular breeding of sweet potato.
Sweet potato is a multifunctional root crop and a source of food with many essential nutrients and bioactive compounds. Variations in the flesh color of the diverse sweet potato varieties are attributed to the different phytochemicals and natural pigments they produce. Among them, carotenoids and anthocyanins are the main pigments known for their antioxidant properties which provide a host of health benefits, hence, regarded as a major component of the human diet. In this review, we provide an overview of the major pigments in sweet potato with much emphasis on their biosynthesis, functions, and regulatory control. Moreover, current findings on the molecular mechanisms underlying the biosynthesis and accumulation of carotenoids and anthocyanins in sweet potato are discussed. Insights into the composition, biosynthesis, and regulatory control of these major pigments will further advance the biofortification of sweet potato and provide a reference for breeding carotenoid-and anthocyanin-rich varieties.
Soybean [Glycine max (L.) Merrill] is a predominant edible plant and a major supply of plant protein worldwide. Global demand for soybean keeps increasing as its seeds provide essential proteins, oil, and nutraceuticals. In a quest to meet heightened demands for soybean, it has become essential to introduce agro-technical methods that promote adaptability to complex environments, improve soybean resistance to abiotic stress , and increase productivity. Plant growth regulators are mainly exploited to achieve this due to their crucial roles in plant growth and development. Increasing research suggests the influence of plant growth regulators on soybean growth and development, yield, quality, and abiotic stress responses. In an attempt to expatiate on the topic, current knowledge, and possible applications of plant growth regulators that improve growth and yield have been reviewed and discussed. Notably, the application of plant growth regulators in their appropriate concentrations at suitable growth periods relieves abiotic stress thereby increasing the yield and yield components of soybean. Moreover, the regulation effects of different growth regulators on the morphology, physiology, and yield quality of soybean are discoursed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.