E-cigarettes are heavily advertised as healthier alternative to common tobacco cigarettes, leading more and more women to switch from regular cigarettes to ENDS (electronic nicotine delivery system) during pregnancy. While the noxious consequences of tobacco smoking during pregnancy on the offspring health are well-described, information on the long-term consequences due to maternal use of e-cigarettes do not exist so far. Therefore, we aimed to investigate how maternal e-nicotine influences offspring development from earliest life until adulthood. To this end, virgin female Drosophila melanogaster flies were exposed to nicotine vapor (8 µg nicotine) once per hour for a total of eight times. Following the last exposure, e-nicotine or sham exposed females were mated with non-exposed males. The F1-generation was then analyzed for viability, growth and airway structure. We demonstrate that maternal exposure to e-nicotine not only leads to reduced maternal fertility, but also negatively affects size and weight, as well as tracheal development of the F1-generation, lasting from embryonic stage until adulthood. These results not only underline the need for studies investigating the effects of maternal vaping on offspring health, but also propose our established model for analyzing molecular mechanisms and signaling pathways mediating these intergenerational changes.
Background
The fruit fly Drosophila melanogaster lives in natural habitats and has also long been used as a model organism in biological research. In this study, we used a molecular barcoding approach to analyse the airways microbiome of larvae of D. melanogaster, which were obtained from eggs of flies of the laboratory strain w1118 and from immune deficient flies (NF-kB-K), and from wild-caught flies. To assess intergenerational transmission of microbes, all eggs were incubated under the same semi-sterile conditions.
Results
The airway microbiome of larvae from both lab-strains was dominated by the two families Acetobacteraceae and Lactobacillaceae, while larvae from wild-caught flies were dominated by Lactobacillaceae, Anaplasmataceae and Leuconostocaceae. Barcodes linked to Anaplasmataceae could be further assigned to Wolbachia sp., which is a widespread intracellular pathogen in arthropods. For Leuconostoceae, the most abundant reads were assigned to Weissella sp. Both Wolbachia and Weissella affect the development of the insects. Finally, a relative high abundance of Serratia sp. was found in larvae from immune deficient relish−/− compared to w1118 and wild-caught fly airways.
Conclusions
Our results show for the first time that larvae from D. melanogaster harbor an airway microbiome, which is of low complexity and strongly influenced by the environmental conditions and to a lesser extent by the immune status. Furthermore, our data indicate an intergenerational transmission of the microbiome as shaped by the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.